TABLE OF CONTENTS ``` Preliminary Classification Eutrophication Indices Planimetric Map Bathymetric Map Impoundment Submersed Aquatic Plant Map Emersed Aquatic Plant Map key Floating Aquatic Plant Map. key Chemical Stations Phosphorus Nitrogen General Guidelines Chemical Parameters Station 1 Graph: Kjeldahl Graph:Nitrates Graph: Phosphorus Station 2 Graph: Kjeldahl Graph: Nitrates Graph: Phosphorus Outfall Graph: Kjeldahl Graph: Nitrates Graph: Phosphorus Chemical and Physical Parameters Station 1 Station 2 ``` ``` Heavy Metals Tests Heavy metals and aquifer pollution Density and migration fig. 6 Heavy Metals Biological Measurement Diatoms Algae Flagellates Benthos Chemical Paramater Nutrient Budget August September October March April May June July August September October Nutrient Utilization Hydrology Groundwater Well drained soils Hydrologic system Fig. 1 Hydrologic cycle Fig. 2 Flow in water table aquifer Fig. 3 Hydraulic Parameters 1980 Aquifer Precipitation Evaporation Residence time Flushing rate Precipitation graph Normal ``` 1980 ``` Hydraulic Parameters Monthly Outfall Flow Graph Geology Soil Series Soil Legend Map Key Soils Long-range Control Techniques Watershed Management Non-structural 1. Zoning 2. Development Control 3. Phosphate Ban Watershed Management Structural Diversion Controlling Nutrient and Sediment Influx Locating Faulty Septic Systems Flow Reducing Devices Soil Erosion Sanitary Landfill Leachate Sewering Alternate Waste Systems In-lake Management Methods Harvesting Motor Boat Use Inactivation of Nutrients Chemical Weed Control Lake Bottom Sealing Drawdown Biological Methods Herbivorous Fish Biomanipulation Dilution Aeration and Mixing Dredging ``` Environmental Impact Conclusion Addenda Management Time Schedule a) Addenda 2 pages Lyons-Skwarto did a previous base line survey and a modified eutrophication index for forty-one ponds in Plymouth and Little Long ranked thirty-first (31). It ranked high on the plant trophic index, it was thirtieth (30). Both the phosphate and nitrate readings were high and the pond was ranked as ultra eutrophic (hypereutrophic). Further studies were recommended mainly for its impact on Long Pond, which is oligotrphic. The outfall of Little Long contributes the only tributary to Long Pond and its volume per day is substantial. The nutrient loading from this known point might be substantial enough to change the trophic state of Long Pond from oligotrophic to eutrophic. Thus it was, the program was started and completed, always keeping in mind the updated guidelines of federal and state programing; most expecially the guidelines of the Federal Clean Lakes Program. Another problem that was always present: would restorative remedies affect Long Pond? It was paramount that remedies should not endanger the trophic state of Long Pond. ## CLASSIFICATION DEFINITION The trophic state of a lake is determined by a large number of factors including latitude, altitude, climate, watershed characteristics, soil types, human activities and lake morphometry. Three factors are found to be most important. They are climate, nutrient supply and lake depth. OLIGOTROPHIC: Aquatic plant production is low; aquatic animal production is low; aquatic plant nutrient flux is low. Oxygen is present in the hypolimnion. Depth tends to be deeper. Water quality for most domestic and industrial use is good, total salts or conductance is usually lower Number of plant and animal species is varied and diverse. Oligotrophic waters have only a small supply of available nutrients, hence, they support little organic production. EUTROPHIC: Aquatic plant production is high; aquatic animal production is high; aquatic plant nutrient flux is high. Oxygen in hypolimnion is absent. Depth tends to be more shallow. Water quality for most domestic and industrial uses is generally poor. Total salts or conductance is mostly higher. Number of plant and animal species is fewer. Eutrophic waters are waters with a good supply of nutrients, they may support rich organic production, such as algal blooms. MESOTROPHIC: Lakes exhibit conditions between eutrophic and oligotrophic, their water is less transparent than oligotrophic waters, but more transparent than eutrophic waters. Supplies of dissolved oxygen decrease during the summer months in deep water, but do not disappear entirely as in eutrophic waters. Less all-around production than eutrophic waters. The term ultraoligotrophic is sometimes used for lakes on the lowest extreme scale while the term hypereutrophic is used for this other extreme. The above is a brief description of classification, and the trophic index was developed along these qualifications. The following parameters were considered in rating. - 1. oxygen depletion - 2. transparency - 3. phytoplankton - 4. nitrogen - 5. total phosphorous - 6. biological A previous report rated Little Long Pond as a highly eutrophic pond and with the various parameters examined in this report this was brought into a sharper focus. Plant production was very high throughout the growing season, there was an abundance of both macrophytes and microphytes. The elodea population was dense out to the seven foot contour line which included 90% of the pond bottom. Blue-green filamentous algae was found in the deepest points. Phosphorus is usually the most important nutrient controlling lake productivity, therefore, total phosphorus is an important measure of a lake's trophic state. An average figure would generally be taken as between .015 .02 ppm as the lowest dividing line between eutrophic and oligrotrophic lakes, with a .04 ppm being a critical reading. Readings taken during non-productive season. The March, April and early May readings were well over the accepted critical. If the pond was nitrogen limited the above would not be so critical and the emphasis would be on the nitrogen readings. Little Long Pond is a phosphorus limited pond. Nitrogen is an important plant nutrient, but limmologists have done little to develop quantitative trophic criteria for nitrogen concentrations .25 ppm of nitrate is generally taken as a critical point, above which algae and plant growth are greatly accelerated. The March readings are all high with station 2 and outfall very high, so high as to indicate nutrient pollution. Little Long is a shallow non-stratified pond. Most eutrophic lakes tend to be shallow with a relatively extensive littoral zone. #### LITTLE LONG POND - A Problem Lake Eutrophication = A natural enrichment process or a lake, which may be accelerated by man's activities. Usually manifested by one of more of the following general characteristics. - 1. Excessive biomass accumulations of primary producers. - 2. Rapid organic and inorganic sedimentation and shallowing. - 3. Seasonal and dissolved oxygen deficiencies. # Indices of eutrophication Biological parameters Macrophyte identification and coverage Submersed aquatic plant vegetation population was codense, with 95% of the benthos covered. Dominant species was Elodea. Heavy Elodea count out to 3 foot contour line. ## Macrophytes - Phytoplankton Algal Generic identification - algal pigment - chlorophylla. Average summertime count of chlorophylla on trophic scale .005 ppm oligotrophic .01 ppm eutrophic Water color in July and August had a heavy green tint, with green unicellular alge predominant. # Physical indicators - species pediastrum duplex at 10⁴/ml count 10⁴/ml oxygen depletion. This is a non-stratified pond and being so it exhibits standard fluctuations of oxygen common in shallow bodies of water. Readings are often high but oxygen depletion results when plant and animal respiration and and decay of organic material remove the dissolved oxygen from the water faster than it is replaced by or photosynthesis. Below 4.0 mg/l is considered critical. #### Transparency to 7 feet (2.13 M). In oligotrophic lakes the secchi disc reading is 3 meters plus and the eutrophic reading ranges from 1 foot to 2.0 meters. Little Pond readings ranged from 5 feet (1.5 M) Depth - Shallow-Nean depth 05' 1.52 N most eutrophic Maximum depth 08' 2.44 M Lakes tend to be shallow with a relatively extensive littoral zone. #### Chemical Parameters Heavy metals - none to indicate industrial feeding. Total phosphorus (i.e. the phosphorus present in both inorganic and organic, dissolved and suspended forms) The dividing line between oligotrophic and mesotrophic lakes is usually regarded as about .01 ppm for oligotrophic and .02 for mesotrophic and .03 for eutrophic. Total phosphorus readings in Little Long were continually .03 or higher. # Indices of Eutrophication #### Chemical Parameters Nitrogen. Eutrophic Lakes: Nitrates plus ammonia nitrogen. The lowest acceptable limit for eutrophic classification. In Long Pond the nitrate and ammonia nitrogen were usually above the bare minimum of .3 mg/l Conclusion: Little Long Fond is a highly eutrophic Fond with a prospect of generally worsening conditions unless strong counter measures are instituted. The following includes testing inlake and outlet; monitoring all parameters, conclusions and solutions, and funding, are all with the idea in mind to offer methods of reducing the effects and rate of eutrophication of Little Long Fond. # LITTLE LONG POND Planimetric Map ittle Long Pond lymouth, Mass. atershed type: coastal cres: 45 = 18.23 Hectares ltitude: 068' ater type: warm ond type: natural tratified: no ond use: recreation, esthetic opo sheet: USGS 1:24000 Sagamore osition Topo sheet: up 21.6 right 1.6 noreline distance: 1.25 miles 6600' Scale 1:520' LITTLE LONG POND (Bathymetric Map) Maximum depth 8' 2.44 M Mean depth 05' 1.52 M Surface area 45 acres 18.2 H Acre feet 225 Total gals. 73,316,475 Impoundment Map # MH ... # $\label{eq:little_LONG_POND} $$ \text{Submersed Aquatic Plant Map with Key} $$$ Water has green tint. Chlorophyceae algae unicellular Heavy elodea count out to 7 foot contour line. Heavy infestation Potamogeton Sap. Najas with
large clumps of elodea. # SUBMERSED AQUATIC PLANTS | LATIN | 1 | COMMON | MAP NUMBER | |---|------------|----------------------------------|---------------| | Potamogeton | | Pondweed | | | Potamogeton Ame | ericanus . | | | | Potamogeton Amp | | Large Leaf Pondweed | * | | Potamogeton Cris | spus | Curly Leaf Pondweed | | | Potamogeton Dive | ersifolius | Waterthread Pondweed | 3 | | Potamogeton Filif | formus | * | | | Potamogeton Filio | osus | Leafy Pondweed | | | Potamogeton Gran | mineus | Variable Pondweed | | | Potamogeton Nata | ans | Floating Brown Leaf | | | Potamogeton Nod | dosus | American Pondweed | | | Potamogeton Pec | tinatus | Sago Pondweed | 4 | | Potamogeton Prae | elongus | White Stem Pondweed | | | Potamogeton Rich | hardsonii | Richardson Pondweed | | | Potamogeton Rob | insii | | | | Potamogeton Vag | ginatus | Giant Pondweed | | | Najas | | Bushy Pondweed | 5 | | Zannichellia | | Horned Pondweed | - | | Elodea | | Waterweed — | 1 | | Ranunculus | | Water Buttercup | | | Ceratophyllum D. | | Coontail | | | Myriophyllum | | Water Milfoil | * | | Alisma | | Waterplantain | | | Heteranthera D. | | Water Star Grass; Mud Plantain - | 6 | | Nasturtium | | Water, Cress | | | Utricularia | | Bladderwort | | | Vallisneria | | Wild Celery | \mathcal{L} | | | | Addenda | | | | | Algae | | | Chlorophyceae | | green | 2 | | unicellular ⁻
filamentous | | | 7 | | Cyanophyceae | | blue-green | | | filamentous | - | | 8 | | Sphagnum | | moss | 9 = | raci on LITTLE LONG POND Emersed Aquatic Plant Map with Key # EMERSED AQUATIC PLANTS | LATIN | COMMON | | MAPN | UMBER | |------------|----------------------|------|------|-------| | Peltandra | Arrow Arum | | | | | Pontederia | Pickerel Weed | | | | | Sagittaria | Arrowhead; Duck Pota | itoe | | | | Polygonum | Watersmart Weed | | | | | Typha | Cattail | | | | | Eleocharis | Spike Rush Sedge | | | 1 | | Scirpus | Bulrush Sedge | - | | 2 | | Juncaceae | Juncus Rush | - | | 3 | | N. | Addenda | | | | # LITTLE LONG POND Floating Aquatic Plant Map with Key # FLOATING AQUATIC PLANTS ATTACHED | LATIN | COMMON | MAP NUMBER | |----------|--|------------| | Nuphar | Cow Lily, Yellow Water Lily, Spatterdock | | | Nymphaea | Water Lily, White Water Lily | 1 | | Brasenia | Watershield | 2 | | | Addenda | • | # FLOATING AQUATIC PLANTS - UNATTACHED | LATIN | COMMON | 14 | | MAP NUMBER | |------------|--------------|----|---|------------| | Lemna | Duckweed | | * | | | Spirodelia | Big Duckweed | | | | | · Wolffia | Watermeal | | | | | | Addenda | | | | LITTLE LONG POND Chemical Sample Stations #### PHOSPHORUS The discharge of phosphorus-containing wastewaters into the surface waters of the United States has contributed to their over fertilization and eutrophication. Phosphorus is found in wastewater in these principal forms orthophosphat polyphosphates or condensed phosphates and organic phosphorus compounds. The quantity of phosphorus resulting from human excretions reportedly ranges from .5 to 2.3 lb. per capita per year. The mean annual excretion is estimated to be 1.2 lb. per capita. The mean annual contribution of phosphorus from synthetic detergents with phosphate builders is estimated to be about 2.3 lb. per capita at present. Thus exclusive of industrial wastes and other phosphorus sources, such as water softening or sequestering agents, the domestic phosphorus contribution to wastewater is about 3.5 lb. per capita per year. The Cornell findings being "human activities are responsible for 75 - 80% of the dissolved phosphorus reaching the lakes in central New York." Phosphorus is considered a key element in the eutrophication of surface waters in the New England Region. Sawyer and Curry and Wilson suggest a concentration of .01 mg/1 of inorganic phosphorus as a maximum permissible without the danger of supporting undersirable growths. If the assets of inorganic nitrogen and phosphorus exceed .3 and .01 - .015 mg/1 respectively at start of the growing season, nuisance blooms of algae may occur. If orthophosphate levels of .01 mg/l or greater occur, then the lake is susceptible to algae blooms and macrophyte growth (Sawyer, Vollenweider). The so-called Cornell Study "Lakes and Phosphorus Imputs" (see Addenda) to this report reached the important basic conclusion that dissolved phosphorus (organic and inorganic) has a far more important influence on algal growth. # Residential runoff - 6% Atmospheric fall-out - 6% Studies have shown that approximately 50% of the phosphorous present in domestic waste water is derived from the phosphorous that is used in various cleaning compounds such as detergents. Phosphate is usually strongly sorbed by aquifer materials except in sandy areas. Quartz and other sands that have low iron, carbonates, aluminum, clay mineral and organic content will readily transport phosphate in ground water. In sandy soil such as those contacted in southern Massachusetts, it is found that the sorption capacity of the sandy soil is exceedingly small with the results that septic tank disposal systems located in the watershed area with sandy soil, rarely have problems with plugging. Those systems readily transmit the nutrients from the household to a nearby water course via ground water. High phosphorous readings in aquifer and springs feeding Little Long Pond are evidence of this phenomenon. According to a Cornell study, the phosphorous content of domestic sewage ranges from 1 - 2 kilograms (2.2 - 4.4 lbs.) per capita per year depending primarily on whether laundry detergents containing phosphates are being used by house-holds. Various researchers have recorded the annual per capita contribution of phosphorous in pounds from domestic sewage as 2-4 (Bush - Mulford 1954); 2.3 (Metzler et al 1958); 1.9 (Owen 1953); and 3.5 (Sawyer 1965). The eutrophication of a lake can be controlled or its effects on water minimized by reducing the nutrient input into the lake, increasing nutrient output from the lake, immobilizing nutrients within the lake and controlling excessive growths of algae and macrophytes within the lake. This has the phosphorus attached to the soil particles (particulated). The benthic transfer of nutrients is complex and the transfer to and from the water column is still open to reserve. The EPA guidelines in it's "clear lakes program" states "phosphorus is usually the most important nutrient controlling lake productivity, therefore, total phosphorus (i.e. the phosphorus present in both inorganic and organic, dissolved and suspended forms) is an important measure of trophic state. The dividing line between oligotrophic lakes is usually regarded as 10 ug/l (.01 mg/l) and between mesotrophic and eutrophic lakes as about .02 mg/l." Best reading times are in winter months, the most non-productive season. Concentrations of total more than .01 mg/l in the groundwater are not considered normal and when this value is attained, a source of contamination is suspect. Soluble phosphorus concentrations in groundwater are virtually non-existent because of chemical fixation and precipitation as insoluble compounds of calcium, magnesium, iron and aluminum; this is in contrast to nitrates which have greater mobility. In The Carver Soil Series, however, fixation is virtually non-existent. #### NITROGEN According to Sawyer, the critical concentration of nitrogen, below which algal growths were not troublesome, was .3 mg/l, provided that phosphorus was kept below .015 mg/l. For some algae, the optimum nitrogen: phosphorus ration appears to be about 30:1, for other algae rations 15.18: 1 The presence of .01 mg/1 of phosphorus and .30 mg/1 of inorganic nitrogen in ponds or lakes at the time of spring overturn will probably foster the production of algae bloom. Gerloff and Skoog suggest that in many instances nitrogen rather than phosphorus may be the limiting element in the growth of algae. Imhoff and Mueller point out that enormous growth of plants in streams, lakes and ponds, does not occur if the nitrate as N is kept below .3 mg/l and the total nitrogen as N is below .6 mg/l. According to Lavfer, a generally accepted limit for free ammonia for sanitary purity of water supplies is between .05 and .10 mg/1. Although free ammonia is often of vegatable origin and without hygienic significance, it's concentration of plus .10 mg/1 renders water suspect of recent pollution. Nitrites in water are generally formed by the action of bacteria upon ammonia and organic nitrogen. Owing to the fact that they are quickly oxidized to nitrates, they are seldom present in surface water in significant concentrations. In conjuction with ammonia and nitrates, nitrates in water are often indicative of pollution. As a very important nutrient and a common constituant in septic tank effluent, nitrogen has a much greater mobility then phosphorus and hence as an indicator would be first to make it's appearance. The nitrogen cycle in <u>surface waters and lake sediments</u>. A modified representation of the nitrogen cycle applicable to the surface water environment is presented in figure 4. Nitrogen can be added by precipitation, dustfall, surface runoff, subsurface groundwater entry and direct discharge of wastewater effluent. In addition, nitrogen from these can be fixed by certain photosynthetic blue-green algae and some bacterial species. Within the aquatic environment, ammonification, nitrification, assimilation and delitricication can occur as shown in figure 5. Ammonification of organic matter is carried out by microorganisms. The ammonia thus formed, along with nitrates, can be assimilated by algae and aquatic plants, such growths may create water quality problems. The nitrogen cycle in <u>soil and groundwater</u>. Figure 5, shows the major aspects of the nitrogen cycle associated with the soil/groundwater environment. Nitrogen can enter the soil from waste water or waste water effluent, artificial
fertilizers, plant and animal matter, precipitation and dustfall. In addition, nitrogen fixing bacteria convert nitrogen gas into forms available to plant life. Usually more than 90% of the nitrogen present in soil is organic. The nitrate content is generally low due to assimilation by plant roots and leaching by water percolating through the soil. Nitrate pollution is the principal groundwater quality problem in many locations. The problem in Plymouth is the Carver soil series and it's inability to filter or bind any polluting plumes and nitrates are readily transported into the groundwater. #### GENERAL GUIDELINES | | Permissible Levels | Critical | |-------------------------|--------------------|----------| | Total phosphorous mg/l | .025 | .04 | | Orthophosphorous mg/1 | .004 | .01 | | Organic Nitrogen mg/1 | .20 | . 40 | | Ammonia mg/l | .02 | .05 | | Nitrate mg/1 | .10 | .25 | | Nitrite mg/1 Less th | nan .001 | .002 | | Inorganic Nitrogen mg/l | .12 | .30 | Little Long Pond has no tributary feed, under normal conditions. The only contributions to volume are rainfall, aquifer action and some surface runoff. All factors point to in-lake nutrient loading. Station 1 = All P readings in the Bellweather months, March, April and October were critical or above. The nitrate readings were exceedingly high except in August and September, see nutrient utilization. Total nitrogen readings are so high as to suspect bad septic leakage somewhere in the area of station 1. Such high nutrient loading in time will show up in changing of trophic state of Long Pond. Station 2 = The loading here, though high, is not as high as station 1. All nitrate readings were lower. The March and October readings were high, in fact, critical. The phosphate readings were critical from March to June. The outfall phosphate readings were very high March through June. The high phosphate reading makes suspect a pollution infiltration along outlet stream. (see locating faulty septic systems.). # Little Long ## Chemical Parameters # Station No. 1 | | Total Phosphorus Mg/L | Nitrate N
Mg/L | Nitrite N
Mg/L | Kjeldahl N
Mg/L | |---------|-----------------------|-------------------|-------------------|--------------------| | gust 15 | .04 | 1.5 | ,005 | .70 | | gust 30 | .04 | 1.5 | 11 | No angle | | ptember | .04 | 1.3 | 11 | . 50 | | tober | .05 | 1.2 | 11 | .30 | | rch | .05 | 1.7 | 11 | .40 | | dl | .04 | 1.3 | 11 | .45 | | y 15 | .05 | . 40 | п | .75 | | y 30 | .05 | .40 | 11- | .70 | | ne 15 | .05 | .30 | 11 . | .70 | | ne 30 | .05 | .35 | 11 | .70 | | ly 15 | .04 | .45 | 11 | .50 | | ly 30 | .04 | .35 | n , | .50 | | gust 15 | .03 | .25 | и | .45 | | gust 30 | .03 | .20 | n and | .45 | | ptember | .02 | .15 | u u | . 40 | | tober | .04 | .35 | n e | •35 | # Little Long # Chemical Parameters ## Station No. 2 | | Total Phosphorus Mg/L | Nitrate N
Mg/L | Nitrite N
Mg/L | Kjeldahl N
Mg/L | |-----------|-----------------------|-------------------|-------------------|--------------------| | August 15 | .03 | .15 | .005 | . 60 | | August 30 | .03 | .20 | | .55 | | September | .03 | .22 | | . 45 | | October | .03 | .22 | 11 | .35 | | March | .04 | .30 | 11 | . 50 | | April | .04 | .15 | 11 | . 65 | | May 15 | .04 | . 25 | 11 | .85 | | May 30 | .04 | .25 | 11 | .85 | | June 15 | .04 | .25 | п . | .90 | | June 30 | .04 | .30 | 11 | . 90 | | July 15 | .03 | .30 | 11 | . 65 | | July 30 | .03 | .30 | | • 55 | | August 15 | .02 | .20 | , | . 52 | | August 30 | .02 | .20 | . II | • 50 | | September | .02 | •15 | 11 | .35 | | October | .04 | . 40 | н | .35 | # Little Long # Chemical Parameters # Station No. Outlet | | Total Phosphorus
Mg/L | Nitrate N
Mg/L | Nitrite N
Mg/L | Kjeldahl N
Mg/L | |---------|--------------------------|-------------------|-------------------|--------------------| | gust 15 | .04 | .90 | .005 | .50 | | gust 30 | .04 | .80 | 11 | . 70 | | otember | .04 | .70 | " | - 60 | | ober | .03 | .70 | 11 | . 40 | | ch_ | .06 | 1.13 | п | .40 | | ril | .08 | .50 | 11 | •50 | | v 15 | .08 | . 40 | 11 | .70 | | y 30 | .07 | 30 | " | .70 | | ne 15 | .07 | .30 | 11 . | .60 | | ne 30 | .07 | .20 | 11 | .60 | | ly 15 | .05 | .20 | 11 | .5 | | ly 30 | .04 | .15 | п | .45 | | gust 15 | .03 | .10 | 11 | .45 | | gust 30 | .02 | .06 | Н | .35 | | ptember | .02 | .20 | 84 | .30 | | tober | .03 | .14 | 11 | •30 | Kjeldahl (N) KAE I YEAR BY WEEKS X 180 DIVISIONS KEUFFEL & ESSER CO. MADE IN U.S.A. | _ | |----------| | | | | | - | | - | | 0 | | ٠. | | - | | 11 | | - | | Station | | | | _ | | -0 | | C J | | | | | | | | | | _ | | POND | | - | | ~ | | | | \sim | | - | | | | | | 7.7 | | \simeq | | - | | LONG | | \sim | | - | | | | | | F+7 | | | | - | | I | | E | | TL | | III | | TIL | | LITILE | | , | | | | |-------------|---|--------------------------|---| | | | | | | | | | | | - | | | | | OCT | | | | | | | | | | EPT | | | | | SE | | | | | | | | | | AUG | | | | | 4 | | | | | , | | | | | JUL | | | | | - 1 | | | | | Z | | | 7 | | JUN | | | | | | | | | | MAY | | | | | 7 | | | | | | | | | | APR | | | | | 4 | | | | | M | | | | | MAN | | | | | | | | | | FEB | | | | | لتر | | | | | 0 _ | | | | | 1980
JAN | | | | | | | | | | 1979
DEC | | | | | 19
DE | | | | | | | | | | NOV | | | | | ž | | | | | | | | | | OCT | | | | | 0 |
 | | | | LI | | | 1 | | SEPT | | | | | | | | -/ | | AUG | , | | Z = = = = = = = = = = = = = = = = = = = | | 4 | | | | | | . 90 | .30
.20
.10
.00 | . 40
. 40
. 30
. 20 | | | 1 | | | LITTLE LONG FOND - Station 1 1.50 1.40 1.30 1.20 1.00 | | . 20 | 40 | 50 | 60 | 70 | 80 | 90 | 00 | 20 | 30 | 40 | 50 | | | | | | | | | | | | | | | | | |-------|------|------------|----------|---------------|-----|-----|------|----------|---|----------|--------|----|-----|----------|------------------|----------|------|-----|----------|---------|------|----------|----------|---|----------|-----|------|------| |)
 | | | === | === | | | :: | | | E | 1 | - | | | | = : | == | == | = | | | == | | == | = | | | AUG | | Ī | | | | | | | ::: | | ======================================= | | 1 | - | | <u> </u> | == | <u>:</u> | | | = : | | | | | | | | | | | | | | == | | | | === | | | | | - | - : | | | | | | == | | === | | | | === | | | SPET | | - | | | | ĒĒ | | === | | | | ΞĖ | === | | | | | | === | | | | | | | | = | | | H | | - | | | == | | | | | | | == | | | | | | === | | | | | | | = : | | | | | OCT | | - | | - == | II | - <u>-</u> - | | == | | 1 | | | | | | === | == | | | | | | | | | | | | | H | | | | | | === | | | | E | | | | | | | == | | | | | | | | === | | | | | NOV | | - | | | | | | | ==== | | | === | | | | | | - | | | | | | | - | | | | | < | | _ | | | | | | | | | | | | | | | == | == | | | \equiv | | | | | | = | | | DEC | | | ==== | | | === | | | | | | | | ŧ | | | Ē | | | | | | | | | | = | | | C | | t | | | | | == | | | | | | | | | | | = | | | | | | | | \equiv | = | | | JA | | 1 | | | | | | | | | # | | | | = | | | | | | | | | = | = | | = | | | JAN | | | | | \equiv | | | | == | | | | | | | | | \equiv | | = | | | | | == | | | | | FEB | = | | | | | | | \equiv | | | B | = | | | MAR | 70 | | | | | | = | Ξ | === | APR | | 5 | | | | | | | | | 荁 | | | | | | | | | | | | | | | | | | | 7 | | | 1 | | | | | | | = | | | | | | | | | | | | | | | \equiv | | | | | MAY | | | |) | | | | | | = | K | | | | | | | | | | | | | | | = | | | | | | | | | | = | | | | | NUL | = | === | | | == | Z | | | | 1 | | | | | | | | == | === | 1 | | | | | | | | | | = | | | | | | TUL | = :: | | === | == | | | 1 | | - | | / | | | | | | | | | | | === | | =: | | | === | | | | | | | : | | | | | | / | | | | === | | | | | | | | | | | | : | | = :: | -:-: | | = === | | | : :: | | Ē | 1 | | | / | | | | | = = | === | | | | | | | | | | === | | === | = | === | | | | -: | | | SEPT | | | | | | | | | | = | | | | | | | == | | | = | | | | | | | | | | PI | | | | | : = : | | | | - | : ::: | | === | | | | | | | = = | | = : | | | <u>:</u> | | ======================================= | : : | | | OCT | | | | | | | | | === | = | ==: | | | | | === | | | -: : | | === | = . | | - :: | | | = = | | | 4 | | | | | | | | | | | | | | | === | | | | =: | | == | | | == | | : -
: - - - | === | | = == | | | | | | | | | #=: | | | | | - 7- | - | | | | | | | : .:: | | === | | : | | : | -:- | | | | - | |
:-::=. | | | | | | | | | : :::: | | | : : | . . . | -: :- | | | | : | : | | | | : | | | - | | | | | | | | | | : ::- | | : ::: | | - | :: | - : | | | | 77 | : ; | - : | · :: | : : | : | | | | | | | - | | | 7 7 | :- <u>:</u> : | | | 1:: | | | | | | · | : : | : | : : | | : : | : : | : : : : | | | | | | i | | | | _ | | : | <u> </u> | <u> </u> | : = | | | <u> </u> | ::: | <u>.</u> | | | - : | | : | ::: | :- | - | -
::: | | | - : : | : | :
: : | - | | | | Nitrate (N) LITTLE LONG POND - Station 1 | .01 | .02 | 03 | ,04 | 05 | 06 | 10 | 2 | 08 | 09 | 10 | 11 | , | 12 | 13 | 14 | 15 | 0.1 | | 17 | 18 | 19 | 20 | 21 | 77 | 2 6 | 2 | | | | |-------|-----------|-----------|------------|--|---|-------|------|--------------|-------------|--------|--------|--------------|-------|----------|-------------|-----|----------|----------|----------|----------|-----|------|-----|---|-----------------|-----------------|---------|---|----------| | E | | ==== | | = : | -:- | | | | | 7
| ÷ | : -:
: :t | -:- | 1 | = : | - | i | | | : :: | | | | | | | I | === | AL | | | | | 1 | <u> </u> | : | | ::: | | | | - :: - | | - : : | 1 | | • | | | | : :: | | | | | | Ē | 1 = | 1.11 | G | | | | 1 5 | + | | - | | ;-: | | - | | ::: | : .: | : | | 7 | | | - : | - | | -:- | -:- | . : | | | -: : | | -: :: | 38 | | 1 1 | = + | | + | | | | | i | | | | | ÷. | | | | ī | | | ::: | | | | | -:::: | | : : | T. | 17 | | | | 1. : | + | -:- | | : | : .: | : | 211 | | | L | - : | == | ; : | | ; | : : | | <u>.</u> | | | | | | :- | | | 00 | | | | | 1 | -: : | | | | <u> </u> | | | | - | | | 1 1 | | + | 1.1 | | | - | | | ======================================= | | 1.1 | <u></u> | | H | | =1: 1 | | | 1 | : : | ::::::::::::::::::::::::::::::::::::::: | . ::: | | <u>. : .</u> | <u>.</u> | . : | | :. :
 | | ‡
 | | | | - | | == | | | | | | | | | NO | | | | | T1 - | | -1 | | | | | | | i | | | ET. | | | | | : | | | | : : | = . | | | | V | | | | = = | ΞE | | === | | | | • • | - 7 | | === | === | | 1 1 | - | : | | | | = | | | | | -:- | | | | | E | | 11 | | | | | | | | == | | :-= | | - :- | | === | | 72 | == | | | | === | === | === | | == | == | <u> </u> | | | == | ΞĒ | =1 | | = | | | | == | | === | | | ; | | ::- | <u> </u> | | - 1 | | | | | = | | = | | | DEC | | ==== | | | \equiv i | | | | = | | | | | | = | ‡= | | | | | | | | | === | | === | = | === | | | | | | 1 | | | | | | | == | | | - | === | | | | . : | | | | | = = | | | | | | | JAN | | | | | == | | | | | | | | | == | | | | | = | | = | | | | | | | | | | | | | | | | <u>i </u> | | === | | | == | | | = = | | | | | | | | | | | | | | = | | 1 | FEB | | | | | == | E | | | | | | | | | | | | | | = : | | | | | | | | | | | | | ==== | | | | 7 | | | == | | | | | =: | _ | | == | | | | | | | | | | | | | | MAR | | | === | | | j | | | == | | I | | | | | | | | | === | \equiv | | | | === | | | | | | | | | | == | 1 | | | | | | | | | | | | | | | | | == | | | | | | | | | APR | | | -== | | 1 | | | | | = | | | | | | | | E | | | | | | Ė | | | = | | | == | | | | | | \equiv | | | | | Ξ | Ħ | | | \equiv | | | | | | | | | | | | | | | == | | YAM | | | == | | | | | | | | | | = | | | | | | | = | | \equiv | = | === | | == | | = | | | Y | | | | | == | | | = ± | | _ | | | | | | | | | | | = | = | | | | | | === | = | == | يا | | | == | | | 1 | | | | | <u>:</u> | | | = | | | | | | | | = | | | | | | == | == | | S | | | | | 1 | | | | | | | | | == | _ | | | | | | == | | | | | | | ==: | | = | <u>ر</u> | | | | | / | | | | | | | | = | | | | | | | | = | | | | | === | | | | | F | | | | / | | | === | | | | | | | | | | | | | | = | | | | | | | 7. | | | 1 | | | | 1 | | | | | | | == | === | | | | | | | | | - | | | | | | | | · .5. | | 35 | | | | <u>/=</u> | | | -== | | | | | === | | | | | | | | | | | | | | | | == | | | | | | = | === | | | | | | = | | | | == | | | | | | == | === | | = | | | | | = | | | 1 7 | | | \preceq | | | | = | | | | | | | | | | == | == | | == | | === | | ==- | | === | | | | | 14 | | | | / | | | = | | | | | | | = | === | == | == | | | | | | = | | | | | | | | 20 | | | === | \equiv | / | == | == | | | | | | | == | | | | | | | | | | | | | === | | :-: | | H | == | | | | | : : | === | | - : | | 7 | - | | - 7 | | | | | | | | | | | | : :: | | | -:- | | i | | | _ | | _ | | | | | | | | - · | = | j | | | | | | | | | | | | | | : = | | | | | | | | | | | | | | | - 1. | | | | | | | | | | | | | | 500000 | 123 | | | 1. | | | _ :: | | | | | | | | -: - <u>:</u> | | : : | | | | | | | | | | | | | | | : | 1 | | - :- | | 1 | | | | | | - :- | | | | · <u>:</u>
- | | : = :: | 4 | | | | | == | = : | | | : | | | == | | | | = | | | - :- | <u> </u> | : Ē | -=:= | ==- | 7.3 | | : | - - | | | - : : | | LITTLE LONG POND - Station 2 # 2.00 1.90 1.80 1.70 1.60 1.50 1.10 1.20 1.00 .90 .80 .50 .30 | 70
60
50
40
30 | 50
50
60
60
60
60
60
60
60
60 | |----------------------------|--| Kjeldahl (N) Nitrate (N) LITTLE LONG POND - Station 2 | 11072 | | | |--|--|-------------| | . 70
. 60
. 50
. 40
. 30
. 20 | . 90 | | | 50
.40
.30
.20 | | D | | | | 5 | | | | | | | | n | | | | L3d | | | | 3 | | | | 5 | | | | -} | | | | z | | | | VOV | | | | | | | | 19 | | = + | | 1979
DEC | | | | | | | | 1980
Jan | | | | 180 | | | | 1 | | | | F B | | | | | | | | MAR | | | | \sim | | | | > | | 7 | | APR | | | | | | | | YAY | | | | Y | | | | · . | | | | NUL | | | | | | | | <u></u> | | | | I | | | | | | | | AUG | | | | • , | | | | S | | | | SEPT | | | | | | | | OCT | | | | - | | | | | | | | | | Maria (1994) 4
(1994) 4 (1994) | | | | | | | | | F 54_3, | | | | The second secon | | | | | | | | | | LITTLE LONG POND - Station 2 | .01 | . 02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | | . 10 | . 11 | .12 | . 13 | | 1 . | <u>,</u> | .16 | .17 | .18 | .19 | . 20 | 17. | 17. | 22 | . 23 | | | _ | |--------------|-------|----------------------|-------|----------|-------|-------|----------|-----|------------|------|------------|-----|------|---------------------------------------|-----------------|------------------|----------------|------|----------|----------------|------|-----------------|------------|----------|---------|----------|---|------| | | | | 1 | | | | . : : | : : | <u>.</u> | | : : | 1 | | = : | :. : | -: | === | : : | | | = : | | == | -: | : : | = : | | AUG | | | 1 4 | | | : :: | - | | | | : : | : | : : | • | 1. | : : | ; ; | | ΞĪ | | : | | | : | | | | | | | | | | = | : :: | <u> </u> | 1 | | • : : | | <u>:</u> : | :- | : ; | | - | | :] | - | : :: | i. i | : - | | | | :=: | : | - | : =: | = : | 725 | | | | | Ī·Ī | : : | -:- | - | : | 1.1 | | | | | | :- <u>:</u> | | | Ė | | . :- | : : | | | | | - ! | :
:-: | ======================================= | - | | | | | : -: | : : | | | | 1-1 | ::: | | | | | | -1 | | : : | 1 | | | . : | | <u>.</u> : | | | == | = = | 100 | | | : : : | | : : | 1 | | - | | i.i | 1 | 1 | <u>:</u> ; | | | : : : : : : : : : : : : : : : : : : : | | | | 1 | | 1 = | | | | | | | == | | | | | 1 | 1 | 1 .1 | | -:- | | | 1:: | | | . 3 | | = :- | | | 7 - | | | | | | =: | === | | : | | - 10 | | | | <u>-1</u>
:1 == | : | - 4 | - ::- | | | | | | | | | | 1-1 | | 7:3 | :-:: | | | - : | | | | | == | | | | | | - -
- - - | ==== | | | | | | === | | | | | | | | | = | | | | | | | | == | | | | | | - 1- | == | === | | | | | | | | 7- | = | | Ξ | == | === | | | | | | | | ==- | | -1- | | | | | | | | | == | | | | | | | | :::::
:::::: | | | | = | | 1100 | | | | == | | | | | | | | | | | | | | | - ; | | = | ==: | === | === | | | | | | | | | | | === | | | | | === | === | = :: | | | | | | === | | | | | | | | | | | == | | | = | | | | | | | | | | I | === | Ξ. | 1 = | | === | | | | | | | | | | | | = | | | | | == | | | = | | | | | | | | . = : | | | | | | = | | | | | Ė | | | <u> </u> | == | = | | | | | = | | == | | = | | | | | _= | | | | | | | == | | | | | | | | | | | | | | == | | | | # | Ħ | | | | | | | | | | | | | | | | \equiv | | | | | | | | | | | | | | | | | | | = | == | 3 | | | | | | | | | | | === | | -== | === | | | | | | | \equiv | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | == | === | | | | | | | | | | | | | | 1 | | | | | | | | | = | | | | | | | | | | | | == | =:: | == | | === | | | | | / | 2010 A 100 A | 1 | | | | | | | === | | | | | | | | | | | | _ | | | | | | | | | | | 1 | === | | | | | | | | | | | | | | | = : | | | | == | | === | | | | | | | | | | = | | | †:::= | | | | | | | | | | | | | = | | = | === | | | | == | | | | | | -:- | | | | | | | | | -7 | | | = | | | | | | | | == | | | | | | == | = | | | | | | | | | = | | | ==:: | -1- | - | | | | == | | = | | | | | | | | | | | | | == | = | | === | | | | | | | | | | | === | | ==: | | === | | | _ | | | === | | | | | | === | | _ = | | | | | | | | | | _ | | 1 | | | | | | | == | | | ΞΞ | | ==. | == | | | === | | = == | == | | | | | | | | -=- | ==: | | | | | | | = | | | | | <u> </u> | | | | | | | | <u> </u> | | | | | | | | | | | | === | | | | | - : - | : = | | | | = = | | | === | | | | | | | | | | | | | | | | | = | = = | | | | === | = = | = | - : | | : - : | Ξ. | | === | | | | - : | :
::: | -: | | | | | | | | - ::= | | | 1==: | | | | | | ::= | === | - :- | : : | = : | | | : = | -:-: | - | | | | - : - : | : -: | :- | | | | | = . | | | | === | | | | | = | · | | | : : : | : : | = | | :-: | | ΙŒ | | | | ::: | | = : | | LITTLE LONG FOND - Outlet Kjeldahl (N) | 110, 2 | | 22 | | | | — — | _ | | | 2 | | | | | |--------|------|-----|-----|----------|-----|------------|------|---------|----------------|------|----------|------|------|---------| | .30 | . 50 | .70 | .90 | .10 | .30 | . 40 | . 60 | .70 | . 90 | 2.00 | | | | | | E | | | | | | | | 1:1-1: | | | | + | | AUG | | | | | | | | | | 13. | ::: <u>1</u> : | | | ==== | | e. | | | | | | | | | | | <u> </u> | | | | | SEPT | | | | 1 | | | | | | | <u> </u> | | <u> </u> | | | | | | / | / | | | · | 1 | | | | | | | |
OCT | | | | | | -7 2 7 7 | | | | | | | | | |
Z | | | | | | | | | | | | | | | === | NOV | | | | | | | | | | | | | | | | DE | | | | | | <u> </u> | | | | | | | | | |
DEC | | | | | | | | | | | | | | | | JAN | | | === | FEB | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | |
MAR | | | | | | | | | | | | | | | | APR | | | | | | | | | | | | | | | | ž | | | | | | | | | | | | | | | | YAM | | | | 7 | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | |
NUL | | | = | | | | | | | | | | | | | ١ | | | / | | | | | | | | | | | | | 1L | | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | === | ଦ | | | | | | | | | | | | | | | | SEPT | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | OCT | === | | | | 1 | · | | | | | | | ==== | | | | | | | | | | | | | | | | |
1 | | | | | | | | | | : : :: | | | | | | 1 | | | | AU | |---|--|-------| | | | C | | | | SEP | | | | | | | | OCT | | | | | | | | VOV | | | | | | | | DE 19 | | | | EC FC | | | | JA | | | | AN | | | | F | | | | 8 | | | | MAR | | | | Ð | | | | PR | | | | 3 | | | | MAY | | | | ر | | | | S | | | | 4 | | | | | | | | - | | | | G | | | | IS. | | | | 17 | | | | OCT | | | | - | | | | | | | | | | L | | | | | | | | | | | | | | | KEUFFEL & ESSER CO. MADE IN USA. LITTLE LONG FOND - Outlet | 1 | | |---|----| | Ĩ | | | (| لد | | ¢ | | | | _ | | 1 | | Nitrate (N) | . 40
. 30
. 30 | .60 | .90 | 1.30 | 1.40 | 1.50 | | | | | | | | | | |---|-------------|-------------|----------------------|----------------------|--|-------------|---------|----------|-----|--------------|------------|------|------------|--| | 30 | | | | | Ť | - <u> </u> | : :::: | | Ī | : : : | : : : | | 1 = 1 | AUG | | - | | | | | | ĦŢ | | | 17 | i i i | | | 7.7 | | | | | | | : :::: | | | | <u> </u> | 1.: | :::: | • ! | 1 | ::: | TS. | | | | | | : : : | 11: | : : : : | | | 1.: | | Ī : : | | 1 | TARS | | | 7 | + : : : | | : : : : | | i i ii: | : = : : | 1-115 | | | :.:: | :::: | | OCT | | | | | | | | | | | 1 | <u>.</u> | = = = | | | H | | | | | <u> </u> | | | | ==== | | 4= | | | | | NOV | | | 1 = = : | <u> </u> | | | -3.5 | | | | 45 | | : = : | :::: | === | < | | | | | | | | | | | | | | === | | DEC | | | | | | | | | | | #= | | | | === | | | | | | | | | | | ==: | #= | = === | === | | == | JAN | | | | | | | | | | | # | === | | | === | Z | | | | | | | | | | | | === | | | == | FEB | | | | | | | | | | | # | === | | | === | ====================================== | | | | | | | | | | | | == | | | | | | | | | | | | | | | # | === | | | | ≣]~ | | | | | | | | | | | = | | | | | APR | | | | | | | | | | | = | | | | | = 7 | | | | | | | | | | ==== | | | | | | YALI | | | = 7 | | | | | | | | = | | | | | | | | - | | | | | === | | | | | | | | | | | / | | | | #== | :== | | | | | | | | Z | | ======================================= | | | | | | | | | | | <u> </u> | = : | - : : : : | | | | | | | : | ‡ : - = - : | | | | | | : = : | - | | -: - | | | | | <u>: :</u> : : | : | | | | | | : ÷: | <u>.i </u> | | : - | AUG | | | | - | : : : : . | - : |] | | | . : = | | : : : | | | .1 | | | | THE E.F. | <u> </u> | 1441 | : . : - . | . :-: | | <u></u> | | 1 : | : | • | | | | | | - : : : : : | -: -: -: -: | - | i di I | 1::: | | : | · : : | | <u>: : :</u> | - 1 | | . : : | | | | | : : : : : | | . | | • : ! : | | | | : <u>:</u> | | ij | | | | | | i i i i i | 1-1-1-1 | : - :: | 1::: | : : | : : : | | | : : : | × 34 | | | | | | | | | 1-: | | | | | | | | | | | | | | | | | | | i ii | : : | | • • | 0 - 0 | | F | | | | 1 + 1- 1 | : : : : : | - 11. | : : : | | 1 : 1 | . [- : | | | • | | | · <u> </u> | | | | | | | | : : | | : ; | 1 . | • : | • | | | | | | | | 1 - 11 | | : | | | | | | | | | | | | | | | | | 1 | 4 . [| | | : | : : : | | | | | # Chemical and Physical Paramenters ## Station 1 | | Temp. |
Secchi
Feet M | Conductivity
Mhos/cm | Ph
Standard Uni | Do | Total
Hardness | Total
Alkalinity | |------------------------|-------|------------------|-------------------------|--------------------|-----|-------------------|---------------------| | | | | 280 | 7.1 | 6.2 | 17 | | | ugust 30 | 62 | 6,5 | 280 | /:- | | | | | eptember | 60 | 7.0 | 275 | 7.0 | 7.0 | 18 | | | ctober | 57 | 7.0 | 275 | 7.0 | 7.0 | 18 | | | | 54 | 7.0 | 300 | 7.0 | 7.5 | 17 | | | arch | 57 | 7.0 | 325 | 7.2 | 7.5 | 17 | | | pril | 59 | 7.0 | 330 | 7.0 | 7.3 | 19 | 01 | | lay 15 | 61 | 6.5 | 330 | 7.0 | 7.2 | 19 | z | | lay 30 | 63 | 6.0 | 335 | 7.0 | 7.2 | 18 | H
A | | June 15 | | 5.0 | 340 | 7.0 | 7.0 | 18 | T | | Ime 30 | 63 | 5.0 | 350 | 7.0 | 7.0 | 18 | so. | | July 15 | 65 | 5.0 | 345 | 7.0 | 6.5 | 17 | <u>п</u> | | July 30
August 15 | 65 | 5.0 | 340 | 6.9 | 6.4 | 18 | - | | | 64 | 5.0 | 310 | 7.0 | 6.5 | 19 | | | August 30
September | 62 | 6.5 | 285 | 7.0 | 7.0 | 18 | | | | 58 | 7.0 | 260 | 7.0 | 7.0 | 18 | | | October | 58 | 7.0 | 200 | ,,,, | | | | ## Chemical and Physical Paramenters ## Station 2 | | FO CO | Secchi | Conductivi | ty Ph | Do | Total
Hardness | Total
Alkalinity | |-----------------|-------|--------|------------|--------------|-----|-------------------|---------------------| | | Fo Co | Feet M | Mhos/cm | Standard Uni | Lts | nardness | Alkalinity | | August 30 | 64 | 6.5 | 250 | 6.4 | 6.1 | 18 | | | September | 61 | 7.0 | 230 | 6.4 | 6.7 | 18 | | | October | 58 | 7.0 | 210 | 6.4 | 6.8 | 18 | | | | 54 | 7.0 | 250 | 6.3 | 7.2 | 17 | | | March
April | 57 | 7.0 | 260 | 6.3 | 7.2 | 18 | | | | 59 | 7.0 | 280 | 6.4 | 7.2 | 19 | | | May 15 | 61 | 6.5 | 280 | 6.4 | 7.1 | 19 | | | May 30 | 62 | 6.0 | 280 | 6.4 | 7.0 | 19 | 10 | | June 15 June 30 | 65 | 5.0 | 285 | 6.4 | 6.8 | 20 | Z | | | 65 | 5.0 | 285 | 6.4 | 6.7 | 19 | H A | | July 15 July 30 | 66 | 5.0 | 285 | 6.3 | 6.5 | 18 | H | | August 15 | 68 | 5.0 | 280 | 6.3 | 6.4 | 18 | S | | August 30 | 68 | 5.0 | 260 | 6.4 | 6.0 | 18 | . 1
B | | September | 64 | 6.5 | 240 | 6.4 | 6.5 | 17 | | | October | 58 | 7.0 | 250 | 6.4 | 6.8 | 17 | | | | 30 | | | | | | | | | | | | | | | | | | | , | | | | 200 | | ## Chemical and Physical Paramenters # Station 3 | | F° C° | Secchi
Feet M | Conductivi
Mhos/cm | ty Ph
Standard Unit | Do
s | Total
Hardness | Total
Alkalinity | |-----------|-------|------------------|-----------------------|------------------------|---------|-------------------|---------------------| | ugust 30 | 68 | | 170 | 6.0 | 6.0 | 19 | | | eptember | 65 | | 160 | 6.0 | 6.2 | 19 | | | ctober | 60 | | 160 | 6.0 | 6.8 | 20 | | | larch | 54 | | 180 | 5.9 | 7.2 | 19 | - | | pril | 59 | | 200 | 5.9 | 7.0 | 19 | 1 | | lay 15 | 64 | | 200 | 5.9 | 7.0 | 18 | z | | lay 30 | 66 | | 210 | 6.0 | 6.9 | 18 | H | | June 15 | 69 | _ | 210 | 6.0 | 6.9 | 19 | H | | June 30 | 72 | | 210 | 6.0 | 6.7 | 19 | · co | | July 15 | 72 | 1 | 220 | 6.0 | 6.6 | 20 | ω
O | | July 30 | 73 | | 200 | 6.0 | 6.3 | 19 | ы | | August 15 | 73 | | 190 | 6.0 | 6.1 | 19 | | | August 30 | 72 | 1 1 | 190 | 6.0 | 6.1 | 18 | 3. 10 | | September | 67 | | 180 | 6.0 | 6.5 | 19 | | | October | 60 | | 180 | 6.0 | 6.7 | 18 | | | | | | | | | | | #### Heavy Metals Natural waters may contain elements other than those considered by EPA standards. Manganese is commonly found. Aluminum, zinc, and copper are usually found in natural waters in varying quantities. Traces of molybdenum, gallium, and nickel have been occasionally found. A new test was run on Hexavalent Chromium, for this is a carcinogen. All the analyses checked by the Texas Instrument Company Lab show all metals well within the range commonly found in natural waters. It can be concluded that industrial wastes do not present a problem in Little Long either by ground water or by rain. | | 976 Drinking
Standards | N.Y. State
Ground Water
Regulations | Proposed EPA
Ground Water
Classification | Little Long Pond | |---------------------------|---------------------------|---|--|------------------| | Zinc | - | .6 | 5.0 | .004 | | Cadmium | .01 | .02 | .01 | .001 | | Selenium | .01 | .02 | .01 | .007 | | Gold | - | - | - | | | Iron | - | .06 | .3 | .021 | | Palladium | - | - | - | .005 | | Aluminum | - | - | - | .006 | | Copper | .1 | . 4 | - | .006 | | Nickel | - | - | - | .005 | | Lead | .05 | .1 | .05 | .001 | | Chromium | .05 | .1 | .05 | .001 | | Boron | - | .01 | - | .008 | | Chromium
(Hexavalent)* | .05 | .1 | .05 | .000 | ^{*} noted carcinogen ^{- =} not considered to date Heavy metal readings were so low as to conclude that industrial pollution was not to be considered in this report. The Carver soil series and all sand and gravel soil series have a potential aquifer pollution problem with heavy metal and chemical compounds as they have with nutrient compounds, along with the added problems of density. Many industrial land-fill and household contaminants have a much greater density range than with the nutrient chemicals. Thus, along with solubility and aquifer flow you have the added factors of gravity and density to consider in the diffusion of contaminants. The effect of densities of various pollutants on the migration in an unconfined aquifer is shown in figure 6. Products of greater densities fall to the base of the aquifer and flow generally in the direction of, from greater to lesser slopes of the confining bed, with some small amounts following the direction of groundwater flow, the quantity depending on the solubility and the amount. Materials of lesser densities generally follow the direction of the flow of the aquifer. In the landfill area of Plymouth, the density and solubility parameter become important factors, as the landfill is located on the Ellisville Moraine, situated between the Manomet outwash plain and Manfields and the Wareham outwash plain. Periodic monitoring of lakes, ponds, kettleholes and stratigically situated wells for heavy metals, industrial wastes and household contaminants is strongly suggested so as to pick up at once aquifer damage and any upward trends in quantities would give first warning signs. Little Long's heavy metals readings are all well within the known standards. However, future periodic testings should include phemolic compound, chlorides, fluorides, sulfates, cyanides, magnesium and manganese. As new standards and testings are continually being added to this parameter, close touch should be maintained with the most recent developments. Figure 6 Effects of density on migration of contaminants. ## Biological Measurements ## Pigment, Gemera Volume Diatoms Cyanophyta Chlorophyta Flagellates Chlorophylla Blue Green Algae Green Unicellular Filamentous Unicellular Filamentous Mg/M³ | | Cells/Ml | Cells/Ml | Cells/M1 | Cells/MI | Cells/M1 | Cells/Ml | MG/M ³ | |-----------|----------|----------|----------|----------|----------|----------|-------------------| | January | | | | | | | | | February | | | | | - 0 | | Mr. N. Ch. Ch. | | March | 10 | | | | 0 10 | 110 | 210 | | April | | 10 | | | | | 43 | | May 15 | | | | | | | | | May 30 | 20 | 10 | 10 | 15 | | | | | June 15 | | 10 | 10 | 40 | | 140 | 60 | | June 30 | | | 10 | | | 190 | 200 | | July 15 | 30 | 20 | 10 | 80 | | 220 | 2 | | July 30 | | | 20 | | | | 210 | | August 15 | 140 | 40 | 30 | 240 | | 350 | 100 | | August 30 | 160 | 70 | 40 | 240 | | | | | September | | | | 2 50 | | 225 | , | | October | | | | 140 | | | | | November | | | | | | 220 | | | December | | | | | | | | # Little Long ## Benthos | | | | | 1.0 | |---------------------|-----------|------------|-----------|-----------| | Paramenter | Station 1 | Station 2 | Station 3 | Station 4 | | | | | | | | Mg/L | | | u | | | Total Phosphorus | 166 | 190 | 185 | | | | 36 | are u | 5 | | | | ¥ | ~ | | _ | | | | | (30) | | | Total Nitrogen Mg/L | 2.6 | 3.0 | 2.8 | | | | | | | a a | | | | a. v a x l | 140 | 3 € | | | 8 | | * | | | Solids | 4.8 | 4.9 | 4.4 | | | | | | | | | | - , | | _ | | | Total volatile | 4.5 | 4- | | | | solids: | . 68 | .65 | •71 | | ## Nutrient Budget. August 1979 | ributary | Total Flow G. | Total P PPM*2 | 1bs./Month | Total N PPM*3 | lbs/Month | |-----------|---------------|---------------|------------|---------------|-----------| | 1 | | | | | | | | | * | | | | | 2 | | | | | | | 3 | , | | | | | | tal | | | | | | | tfall | | | | | | | CLAIL | | | | | | | 1 | 128,563,200 | .04 | 42.7 | 1.4 | 1501.9 | | 2 | | | | | 1 | | 3 | | - 1 - | | | | | 3 | | | | | | | tal | | | | | | | infall *1 | 5,303,176 | 0 | .0 | 2.44 | 107.9 | | | | *2 | | *3 | | | lake | Total Gallons | Total PPM*2 | lbs/Month | Total PPM*3 | 1bs/Month | | | 73,316,475 | .035 | 21.4 | 1.47 | 899.3 | ^{*1} Rainfall - Phosphorus data not available NH, .48 PPM No, 1.96 PPM. ^{*2} Total P. = All orthophosphates, condensed, organic and inorganic species. ^{*3} Kjeldahl Nitrates, Nitrites. September 1979 | ributary | Total Flow G. | Total P PPM*2 | lbs./Month | Total N PPM*3 | lbs/Month | |-------------|---------------|---------------|------------|---------------|-----------| | 1 | | | , | | 13. | | 2 | | 2 | | | | | 3 | , | | a | | × | | Total | | | | | | | Outfall | | | | | × | | 1 | 128,360,100 | .04 | 42.8 | 1.4 | 1499.5 | | 2 | . " | | | | | | 3 | | | | | | | Total | - | | | | | | Rainfall *1 | 4,007,930 | | | 2.44 | 81,6 | | in lake | Total Gallons | Total PPM*2 | lbs/Month | Total PPM*3 | lbs/Month | | | 73,316,478 | .035 | 21.4 | 1.12 | 685.2 | ^{*1} Rainfall - Phosphorus data not available NH 4 .48 PPM No 3 1.96 PPM. ^{*2} Total P. = All orthophosphates, condensed, organic and inorganic species. ^{*3} Kjeldahl Nitrates, Nitrites. ## Nutrient Budget October 1979 | ibutary | Total Flow G. | Total P PPM*2 | lbs./Month | Total N PPM*3 | lbs/Month | |----------|---------------|---------------|------------|---------------|-----------| | I Duca - | |
| | - | | | 1 | 200 | | | | | | 2 | | | | | | | 3 | | e | | | | | | | | | | - | | 11 | | | · · | | | | fall | 127,963,200 | .03 | 32.2 | 1.3 | 1388.1 | | 2 | | | | *, | | | | | | | · | | | 1 | - | | | | | | nfall *1 | 4,337,852 | | 1 | 2.44 | 88.3 | | lake | Total Gallons | Total PFM*2 | lbs/Month | Total PPM*3 | lbs/Month | | | 73,316,475 | .03 | 18.35 | 1.04 | 636.3 | *3 ^{*1} Rainfall - Phosphorus data not available NH 4 .48 PPM No 3 1.96 PPM. ^{*2} Total P. = All orthophosphates, condensed, organic and inorganic species. Kjeldahl Nitrates, Nitrites. #### March 1980 | | Total Flow G. | Total P PPM*2 | lbs./Month | Total N PPM*3 | lbs/Month | |-------------|---------------|---------------|---|---------------|---------------------------------------| | 702627 | | | | | | | | | | ناه د کارون در از این این در د | | DATE: | | | | | | | | | * | | | | | | | • | | | | | | | | 7 | | | | | | iotal a | | | | | | | out. | All seg | | | | | | | 150,347,520 | .06 | 67.2 | 1.43 | 1794.0 | | | | | | | e e e e e e e e e e e e e e e e e e e | | 1 | | | | 8 7 | | | , | | | E. | | , | | | | | | | | | Tetal | | | | | | | Equifold *1 | 6,561,764 | | | 2.44 | 119.3 | | | * | *2 | 20-12 general 20-2 | *3 | 11-01-51 | | in lake | Total Gallons | Total PPM*2 | lbs/Month | Total PPM*3 | lbs/Month | | | 73,316,475 | .05 | 30.6 | 1.45 | 887.5 | | | | | | | | Rainfall - Phosphorus data not available NH .48 PPM No 3 1.96 PPM. Total P. = All orthophosphates, condensed, organic and inorganic species. Kjeldahl Nitrates, Nitrites. April 1980 | | | April 15 | , | 1.0 | | |---------|---------------|---------------|------------|---------------|-----------| | | Total Flow G. | Total P PPM*2 | lbs./Month | Total N PPM*3 | lbs/Month | | tary | 1,000 | | | | | | | | | | | 690 75 | | | | | | , | | | | | | | | | | | | | | ., | | | | | | | g supremented | 986 | | | | | 11 | | | | | | | | | , | | | | | | 150,347,520 | .08 | 89.6 | .90 | 1129.1 | = | | | | | | | | | | | | | | | | 0 | | | 1 | | | · | | | | *1 | | | | | 06.0 | | fall *1 | 5,327,614 | | | 2.44 | 96.8 | | | | *2 | | Total PPM*3 | lbs/Month | | ake | Total Gallons | Total PPM*2 | 1bs/Month | Total FPM | TOSTROUCH | | | | * | | | | | | 73,316,475 | .04 | 24.5 | 1.28 | 783.1 | ^{*1} Rainfall - Phosphorus data not available NHy .48 PPM No 3 1.96 PPM. ^{*2} Total P. = All orthophosphates, condensed, organic and inorganic species. ^{*3} Kjeldahl Nitrates, Nitrites. May 1980 | | Total Flow G. | May 198 | lbs./Month | Total N PPM*3 | lbs/Month | |---|---------------|--------------|------------|------------------|-----------| | [ributary | Total Flow G. | 10021 1 1111 | | | | | | | | | | | | 1 | | | | | 22 | | 2 | | | | | | | | | | | × | | | 3 | | | | | | | Parties and the second | | | | | | | Total | | | | | | | Outfall | | | | | | | | 148,428,000 | .08 | 88.4 | 1.1 | 1362.4 | | The second | 140,420,000 | .00 | 00.4 | 1.1 | 13024 | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | Total | | | | | | | Rainfall *1 | 2,810,439 | | 1 50 996 | 2.44 | 51.1 | | | | . 4.0 | 3 | *3 | 4 | | in lake | Total Gallons | Total PPM*2 | lbs/Month | Total PPM*3 | lbs/Month | | | | | | ,
1 1 2 a a a | (01.5 | | | 73,316,475 | .05 | 30.6 | 1.13 | 691.3 | ^{*1} Rainfall - Phosphorus data not available NH 4 .48 PPM No 3 1.96 PFM. ^{*2} Total P. = All orthophosphates, condensed, organic and inorganic species. Kjeldahl Nitrates, Nitrites. ## June 1980 | No. of the last | Total Flow G. | Total P PPM*2 | lbs./Month | Total N PPM*3 | lbs/Month | |-----------------|---------------|---------------|------------|---------------|-----------| | ributary | | | | | 24 | | 1 | | | | | | | 2 | | . | | | | | 3 | , | | | | | | cal | - 4 | | | | | | rfall | | | | | | | 1 | 146,196,000 | .07 | 762 | .8 | 975.9 | | 2 | | | | | | | | трии | | | | | | 3 | | | | | | | tal | | | | | | | infall *1 | 3,726,887 | | | 2.44 | 67.7 | | lake | Total Gallons | Total PPM*2 | lbs/Month | Total PPM*3 | lbs/Month | | | 73,316,475 | .05 | 30.6 | 1.08 | 660.7 | ^{*1} Rainfall - Phosphorus data not available NH, .48 PPM No, 1.96 PPM. ^{*2} Total P. = All orthophosphates, condensed, organic and inorganic species. ^{*3} Kjeldahl Nitrates, Nitrites. ## July 1980 | Tributary | Total Flow G. | Total P PPM*2 | 1bs./Month | Total N PPM*3 | lbs/Month | |-------------|---------------------------------------|---------------|--|---------------|-----------| | | | | | | | | 1 | 2.2 | | | | | | 2 | | | The state of s | | | | | | | | | | | 3 | | | | | | | Total | · · · · · · · · · · · · · · · · · · · | | _ | | | | | | | | | | | Outfall | | | | - | | | 1 | 135,616,320 | .04 | 45.3 | .65 | 735.6 | | | | | | | | | 2 | | | | | | | 3 | (20)
1 | | | | | | | | | 16 | | | | Total | \ - | | | | | | Rainfall *1 | 2,688,246 | 0 | 0 | 2.44 | 54.7 | | | | Total PPM*2 | lbs/Month | Total PPM*3 | lbs/Month | | in lake | Total Gallons | TOTAL FIRE | 103/11011011 | | | | | 73,316,475 | .04 | 24.5 | .9 | 550.6 | ^{*1} Rainfall - Phosphorus data not available NH, .48 PPM No 3 1.96 PPM. ^{*2} Total P. = All orthophosphates, condensed, organic and inorganic species. ^{*3} Kjeldahl Nitrates, Nitrites. #### Little Long ## Nutrient Budget ## August 1980 | ributary | Total Flow G. | Total P PPM*2 | lbs./Month | Total N PPM*3 | 1bs/Month | |----------|---------------|-------------------------
--|---------------|-----------| | 1 | | | | | | | | | | A CONTRACTOR OF THE PROPERTY O | | | | 2 | | | W. | | | | 3 | | ø | | | | | otal | ., | | | | | | Outfall | | | | | | | 1 | 129,326,080 | .02 ppm | 21.6 | .41 | 442.46 | | 2 | | | | - | - , | | 3 | | - | | · | | | Total | | | | | | | ₹ainfall | 1,893,992 | 0 | 0 | 2.44 | 38.6 | | in lake | Total Gallons | Total PPM ^{*2} | lbs/Month | Total PPM*3 | lbs/Month | | | 73,316,475 | .03 | 18.4 | •70 | 428.3 | ^{*1} Rainfall - Phosphorus data not available NH .48 PPM No 3 1.96 PPM. ^{*2} Total P. = All orthophosphates, condensed, organic and inorganic species. ^{*3} Kjeldahl Nitrates, Nitrites. # Macrophyte, Microphytes and Nutrient Utilization The period of greatest biological activity occurs in a lake or pond ecosystem during the months of July and August. This is the period of maximum utilization of nutrients by both plants and algae. The long periods of daylight, coupled with high water temperatures, provide the physical thrust for this utilization. So it is at this period the limiting nutrient, as well as others, are shown in many cases to be the lowest of the readings during the yearly cycle. A phosphate reading in March might be .08ppm, and in the same system read as low as .01 - .02 ppm in July and August. Thus, it is that nutrient reading at the season of maximum activity in the biomass could well be below the accepted eutrophication level in a high eutrophic lake, and might even approach oligotrophic levels. It is for this reason that nutrient readings taken in the spring and fall overturn, in stratified lakes, are the real indicators of the trophic condition of the lake. The late fall, winter, and early spring readings for non-stratified bodies of water are the indicators of the actual trophic condition of these lakes and ponds. # HYDROLOGY, GROUNDWATER GEOLOGY Nearly all of Plymouth and parts of Carver, Wareham, and Bourne lie over an unconsolidated aquifer, "The Flymouth Aquifer". This aquifer is located primarily in the soil series called "The Carver Series." This series is exceedingly well drained and the water moves rapidly through the soil profile to the ground water, with little or no purification action. The surface run-off is very low, and infiltration capacity is very high in the Carver soils. This combination of physical factors endangers the water table. The general flow of the aquifer is from northwest to the southeast. There are two types of aquifers: the water table (unconfined aquifer)(see fig. 2) and the artesian (confined aquifer). The type that concerns this report is the unconfined and not the artesian classification, although the protection of the upper (unconfined) would lead generally to the protection of the other. In an unconfined aquifer the water is under atmospheric pressure and the upper saturated surface is known as the water table. The water table is responsible to changes in the amount of stored water and fluctuates seasonally in response to the variations in the rate of natural recharge. The principal source of natural recharge to a water table aquifer is precipitation. An example of this is the lowering of the water table in many kettleholes in Plymouth, i.e. Island Pond, Sandy Fond, and Clear Pond. Also, the various ponds (natural) spring fed, i.e. Little Herring into Great Herring Sea, (flow data in Great Herring report), reflect a corresponding raising and lowering of flow volume due to atmospheric recharge. The rainfall in 1980 being 29.4 inches, as against 42.5 normal, a deficit of 13.1 inches. The deficit is reflected in general lowering of the water level in the various kettleholes. Thus reflecting a variation of precipitation in a corresponding lowering or raising of the water table. Streams can be areas of recharge to or discharge from the water table aquifer. Groundwater in an aquifer is constantly moving from points of recharge towards points of discharge. The movement of ground water is from regions of high hydrostatic head towards those of lower hydrostatic head. See figure 2, for these interalations. Discharge locations for aquifers can be springs, pumped wells, gaining streams and swamps, ponds, lakes and the sea. Confined or artesian aquifers are bound above and below by geologic formations of lower permeability. The aquifers can receive recharge from leakage out of confining beds or from precipitation and surface water bodies in the outcrop area of the aquifer. See figure 1, ground water discussion. The velocity of flow of ground water may in any aquifer be as low as 10 feet per year and only in coarse material or fissures does the velocity exceed 1 mile per year. Coupled with minimum rates of lateral and vertical diffussion, the low velocities of flow cause two significant conditions to develop in ground water basins or streams. First, pollution that is being added to the ground at one point may not affect the quality of water supplies or water quality in surface waters at nearby points for many years, or at distant points for decades, consequently, no complaints are registered and no one may be aware of the damage being done. Second, when pollution is finally discovered or when the quality of water is degraded, the damanged cannot be repaired or otherwise rectified merely by stopping the pollution, for purification by leaching and dilution will require a longer time than the period of original pollution. Thus the speed of groundwater pollution depends on many things but the primary self-evident conclusion is that soil types govern a great deal the speed of contamination. Well drained soils, Geology, and potential Aquifer Pollution Investigations of Childs 1972a, Childs 1972b, Dudley, and Stephenson 1973 show the soil problem areas. - Where coarse sands and gravels are principle sub-soil materials - Very impermeable materials where the effluent may become ponded above horizons at short distances from the point of release. - 3. In poorly drained soils with high water tables. Soils that percolate water very quickly are most often inadequate in terms of removing waste water impurities, such as bacteria, phosphorus and nitrogen. These impurities can cause potential ground and surface water pollution problems. See figure 3. Lot sizes and set backs, type of sewage system should be determined by soil type, along with the soils hydraulic capabilities, purification capabilities, and physical constraints. The slope problem should be part of the consideration. The present methodology in regards to percolation rates should be upgraded so as to accurately assess the soils ability to remove pollutants at potential leach field sites. The characteristics of the Carver soils makes the whole ecosystem susceptable to groundwater contamination. May of the lakes, ponds, and kettleholes in Plymouth are fed by aquifers and any nutrients transferred by this means aids in the eutrophication of these systems. Long-range safe guards must be implemented to protect this valuable natural resource. Illustration of relationships within the hydrologic system. Figure 2 Figure 3 NOTE: OT TOK DRIWARD STALL LADITARY SALENGO NOTAREDRANG FLOW LINES — EQUIPOTENTIAL LINES CONTAMINATED GROUND WATER Flow in a water-table aquifer (humid region). ## HYDRAULIC PARAMETERS MONTHLY Trib. 1 Trib. 2 Aquifer Rainfall Rainfall Outfall Outfall Evap. Evap. Lake Bottom T. Gain T. Loss Loss | Section of the sectio | Gallons | Gallons | Gallons | Inches | Gallons | Gallons | Callana | 7 1 | 0.11 | ross |
--|---------------------------------------|---------|----------|--------|---------|----------|---------|--------|---------|----------| | August | | ***** | 127.1 mg | | | | | Inches | Gallons | | | | | | 127.1 mg | 4.34 | 5.3 mg | 128.6 mg | | 3.15 | 3.8 mg | 128.6 mg | | September | | | 126.8 | 3.28 | 4.0 | 128.4 | | 2.01 | 2.5 | 128.4 | | October | | | 125.4 | 3.55 | 4.3 | 128.0 | | 1.47 | 1.8 | 128.1 | | November | | | 124.1 | 4.87 | 5.95 | 130.1 | | . 6 | .7 | | | December | | | 127.3 | 4.34 | 5.3 | 132.6 | | 0 | 0 | 130.1 | | January | | | 139.3 | .74 | .9 | 140.2 | | 0 | 0 | | | February | · · · · · · · · · · · · · · · · · · · | | 144.0 | .88 | 1.1 | 145.1 | | | | 140.2 | | March | | | 144.6 | 5.37 | 6.6 | 150.3 | | • 7 | .85 | 145.1 | | April | | | 48.4 | 4.36 | 5.3 | 150.3 | | 2.78 | 3.4 | | | May | | | 50.1 | 2.30 | 2.8 | 148.4 | | 3.63 | 4.4 | 150.3 | | June | | 1 | 47.0 | 3.05 | 3.7 | 146.2 | | 3.73 | 4.6 | 146.2 | | July | | 1 | 38.3 | 2.20 | 2.7 | 135.6 | | 4.36 | 5.3 | 135.6 | | August | | 1 | 31.4 | 1.55 | 1.9 | 129.3 | | | 3.9 | 129.3 | | September | | | 30.3 | .82 | | 128.5 | | | 2.8 | 128.5 | | October | | 1: | 26.8 | 4.14 | 5.1 | 129.9 | | | 1.9 | 129.9 | | November | | 1: | 28.8 | 3.01 | 3.7 | 121.7 | | .6 | .73 | 131.7 | | December | | 1 | 34.7 | .97 | 1.2 | 135.9 | | 0 | 0 | 135.9 | mg = million gallon ^{*} Used Government data (see Addenda) *Normal 42.52 inches LITTLE LONG POND - Outlet-GPM Actual Normal PRECIPITATION - 1980 # LITTLE LONG GEOLOGY Soil Series Discussion Carver soil series consist of excessively drained, nearly level to steep sandy soils that formed in thick deposits of coarse, pebbly quartz sand. In most places, Carver soils are coarse sand, but in some places the surface layer and the upper part of the subsoil are loamy coarse sand. Water moves rapidly downward through the solum and underlying substratum. These soils do not retain sufficient moisture for good plant growth and are extremely acid. Carver soils are excessively drained. The permeability of Carver soils is a rapid 6.3 inches per hour. This was the most rapid ecosystem susceptible to groundwater contamination. Many of the lakes, ponds and kettleholes in Plymouth County are fed by aquifers and Little Long is one such example (see hydrologic information), and any nutrients transferred by this means aids in the eutrophication of these systems. Long range safe guards must be implemented to protect this valuable natural resource. CcD - Carver and Gloucester soils - 8-35% slopes These soils occupy moraines in the southeastern parts of the county. Sandy Carver soils make up about two-thirds of this unit, and extremely stony Gloucester soils make up the rest. Gloucester series soils are nearly level to steep, well drained, and somewhat excessively drained soils that formed in glacial till, derived chiefly from granite. Gloucester soils are extremely stony except where they have been cleared for tillage. Unmarked areas: No danger to aquifers with normal use. X = Little Long Pond location. Little Long Pond Soil Survey Map with Soil Legend #### SOIL LEGEND The first capital letter is the initial one of the soil name. A second capital letter, A, B, C, D, or E, shows the slope. Symbols without a slope letter are those of nearly level soils or land types. | SYMBOL | NAME | SYMBOL | NAME | |------------------|--|--------|--| | AFA | Agawam fine sandy loam, 0 to 3 percent slopes | | The same of sa | | AfB | Agawam fine sandy loam, 3 to 8 percent slopes | HoA | Hinckley gravelly loamy sand, 0 to 3 percent slopes | | AgA | | HaB | Minckley gravelly loamy sand, 3 to 8 percent slanes | | ~9~ | Agawam fine sandy laam, silty subsoil variant, 0 to 3 | HoC | Hinckley gravelly loamy sand, 8 to 15 percent slopes | | | percent slopes | HaE | Hinckley gravelly loamy sand, 15 to 35 percent slopes | | AgB | Agawam fine sandy loam, silty subsoil variant, 3 to 8 | НоВ | Hollie Charles from Sand, 15 to 35 percent slopes | | | percent slapes | | Hollis-Chariton fine sandy loams, 3 to 8 percent slopes | | AuA | Au Gres and Wareham loamy sands, 0 to 3 percent slopes | HpC | Hallis-Charlton very rocky fine sandy loams, 3 to 15 | | AuB | Au Gres and Wareham loamy sands, 3 to 8 percent slopes | | percent slopes | | | Ab ores and marenam loamy sands, 3 to 6 percent slopes | HrC | Hollis-Charlton extremely rocky fine sandy loams, | | - | | | 3 to 15 percent slopes | | BaA | Belgrade silt loam, 0 to 3 percent slopes | HrD | Hallia Charles | | BaB | Belgrade silt loam, 3 to 8 percent slopes | | Hollis-Chariton extremely rocky fine sandy loams, | | 868 | Bernardston silt loam, 3 to 8 percent slopes | | 15 to 25 percent slopes | | ВЬС | Bemerdene elle lee 9 en 16 | | | | | Bernardston silt loam, 8 to 15 percent slopes | Ma | Made land | | 8cB | Bernardston very stony silt loam, 3 to 8 percent slopes | MeA | Merrimac fine sandy loam, 0 to 3 percent slapes | | BcD | Bernardston very stony silt loam, 8 to 25 percent slopes | MeB | Merrimac fine sandy loam, 3 to 8 percent slopes | | BdA | Birdsall silt loam, 0 to 3 percent slopes | MeC | Merrimoc rine sandy loam, 3 to 8 percent slopes | | Bo | Borrow land, loamy material | | Merrimac fine sandy loam, 8 to 15 percent slopes | | Br | Borrow land, sandy and gravelly materials | MfA | Merrimac sandy loam, 0 to 3 percent slopes | | BsA | | MfB | Merrimac sandy loam, 3 to 8 percent slapes | | | Brockton loam, 0 to 3 percent slapes | MfC | Merrimac sandy loam, 8 to 15 percent slapes | | BtA | Brockton extremely stony loam, 0 to 3 percent slopes | MfE | Merrimac sandy loam, 15 to 35 percent slopes | | | | Mu | Must made sondy roam, 15 to 35 percent slopes | | CaA | Carver coarse sand, 0 to 3 percent slapes | 2007 | Muck, shallow | | CaB | Carver coarse sand, 3 to 8 percent slapes | Mv | Muck, deep | | CoC | Curver course sand, 5 to 6 percent
stopes | | | | | Carver coarse sand, 8 to 15 percent slopes | NnA | Ninigret sandy loam, silty subsoil variant, 0 to 3 | | CoE | Carver coarse sand, 15 to 35 percent slopes | | percent slopes | | ChA | Carver loamy coarse sand, 0 to 3 percent slopes | NnB | | | CbB | Carver loamy coarse sand, 3 to 8 percent slopes | INNO | Ninigrer sandy loam, silty subsoil variant, 3 to 8 | | CPC | Carver loamy coarse sand, 8 to 15 percent slopes | | percent slopes | | CcD | Curver rounty course sand, o to 13 percent slopes | NoA | Norwell sandy loam, 0 to 3 percent slopes | | CED | Carver and Glaucester soils, 8 to 35 percent slopes | NoB | Norwell sandy loam, 3 to 8 percent slopes | | | | NpA | Natural autra al assessing to the percent stopes | | DeA | Deerfield sandy loam, 0 to 3 percent slopes | NoB | Norwell extremely stony sandy loam, 0 to 3 percent slopes | | DeB | Deerfield sandy loam, 3 to 8 percent slopes | NDC | Norwell extremely stony sandy loam, 3 to 8 percent slopes | | Du | Dune land and Coastal beach | 1 600 | | | | Some folia dira Codsidi beden | Pe | Peat | | | 5 (1) | PtA | Pittstown silt loam, 0 to 8 percent slopes | | EnA | Enfield very fine sandy laam, 0 to 3 percent slopes | PuB | Pittstown very stony silt loam, 3 to 15 percent slopes | | EnB | Enfield very fine sandy loam, 3 to 8 percent slopes | | state of stony state loam, 5 to 15 percent slopes | | EnC | Enfield very fine sandy loam, 8 to 15 percent slopes | QUA | 0 | | EsA | Essex coarse sandy loam, 0 to 3 percent slopes | | Quanset sandy loam, 0 to 3 percent slopes | | EsB | | QuB | Quanser sandy loam, 3 to 8 percent slopes | | | Essex coarse sandy loam, 3 to 8 percent slopes | QuC | Quanset sandy loam, 8 to 15 percent slopes | | EsC | Essex coarse sandy loam, 8 to 15 percent slopes | QUE | Quanser sandy loam, 15 to 35 percent slopes | | EtB | Essex very stony coarse sandy loam, 3 to 8 percent | | to to berceil slopes | | | siopes | RaA | Pauchan sile I 0 . 2 | | E _T C | Essex very stony coarse sandy loam, 8 to 15 percent | | Raynham silt loom, 0 to 3 percent slopes | | | slopes | - | | | E+D | | Sa | Saca very fine sandy loam | | 2.0 | Essex very stony coarse sandy loam, 15 to 25 percent | Sb | Sanded muck | | | slopes | ScA | Scarboro sandy loam, 0 to 3 percent slopes | | EUB | Essex extremely stony coarse sandy loam, 3 to 8 | SdA | Scarbare fine and the state of | | | percent slopes | 0011 | Scarboro fine sandy loam, silty subsoil variant, 0 to 3 | | EUC | Essex extremely stony coarse sandy loam, 8 to 25 | | percent slopes | | | percent slopes | SeA | Scituate sandy loam, 0 to 3 percent slopes | | | percent stopes | SeB | Scituate sandy loam, 3 to 8 percent slopes | | - | | SFA | Scituate very stony sandy loam, 0 to 3 percent slopes | | Fr | Fresh water marsh | SFB | Scituate very stany sandy loam, 3 to 8 percent slopes | | | | SgA | Schoole very stony sandy loam, 3 to 8 percent slopes | | GaA | Gloucester fine sandy loam, firm substratum, 0 to 3 | JgA | Scituare extremely stony sandy loam, 0 to 3 percent | | | constraint the saidy loam, firm substratum, 0 to 3 | | siones | | GaB | percent slopes | SgB | Scituate extremely stany sandy loam, 3 to 8 percent | | Gab | Gloucester fine sandy loam, firm substratum, 3 to 8 | | siones | | | percent slopes | 1000 | | | GaC | Glaucester fine sandy loam, firm substratum, 8 to 15 | Td | Tidal marsh | | | percent slopes | TsA . | Tisbury very fine sandy loam, 0 to 8 percent slopes | | GbA | Gloucester loamy sand, 0 to 3 percent slopes | | , and said, really o to a percent stopes | | GbB | Cloudester loamy sand, U to 3 percent slopes | WaA | Walant to the state of stat | | | Gloucester loamy sand, 3 to 8 percent slopes | | Walpole fine sandy loam, silty subsoil variant, 0 to 3 | | GbC | Gloucester loamy sand, 8 to 15 percent slapes | 149 | percent slopes | | GcB | Gloucester very stony fine sandy loam, firm substratum, | WbA | Warwick fine sandy loam, 0 to 3 percent slopes | | | 3 to 8 percent slopes | Wb B | Warwick fine sandy loam, 3 to 8 percent slopes | | GcC | | WPC | Warwick fine sandy loam, 8 to 15 percent slopes | | Sec | Gloucester very stony fine sandy loam, firm substratum, | | Warwick very racky fine condu ! 2- 15 | | | 8 to 15 percent slopes | | Warwick very rocky fine sandy loam, 3 to 15 percent | | GcD | Gloucester very stony fine sandy loam, firm substratum, | 141_ 4 | slopes | | | 15 to 25 percent slopes | WnA | Windsor loamy sand, 0 to 3 percent slopes | | GdB | Glaucester very stony loamy sand, 3 to 8 percent slopes | WnB | Windsor loamy sand, 3 to 8 percent slopes | | GdC | Gloucester very stany loamy sand, 8 to 15 percent slopes | | Windsor loamy sand, 8 to 15 percent slapes | | GeB | Glaugaster sustained and a sum of the percent slopes | | Windsor loamy sand, 15 to 35 percent slopes | | Geb | Gloucester extremely stony loamy sand, 3 to 15 percent | 137 | Jane, Jane, Jord Su percent stopes | | 1 | slopes | | | | GeD | Gloucester extremely stony loamy sand, 15 to 35 percent | | | | | slopes | | | slopes Little Long Geologic Data | CaB | Carver coarse sand | 3 - 8 percent slopes | |-----|--------------------|------------------------| | CaC | и и и | 8 - 15 percent slopes | | CaE | и в и | 15 - 35 percent slopes | | CaD | 11 11 | 8 - 35 percent slopes | - Soil series very sensitive to groundwater pollution - Soil series sensitive to groundwater pollution #### GUIDELINES FOR REHABILITATION OF LITTLE LONG POND LONG RANGE CONTROL TECHNIQUES IN-LAKE MANAGEMENT METHODS # LONG RANGE CONTROL TECHNIQUES - 1. Controlling Nutrient and Sediment Influx - 2. Watershed Management - A. Non-Structural - B. Structural # NON-STRUCTURAL CONTROL TECHNIQUES # 1. ZONING REGULATION - A. MINIMUM LOT SIZES - B. BUILDING SET BACKS - C. DISCOURAGE DEVELOPMENT OF PORTIONS OF SHORELINE - D. RESTRICT HIGH POLLUTION GENERATING SOURCES - 1. NEAR SHORE - 2. NEAR TRIBUTARIES - 3. IN FLOOD PLAINS - 2. DEVELOPMENT CONTROL - A. RESTRICT DIVISION OF LAND FOR BUILDING OR SETTLING - B. LIMIT DEVELOPMENT IN EROSION AREAS - C. LIMIT DEVELOPMENT IN AREAS WHERE SOIL CHARACTERISTICS PREVENT ADEQUATE ON-SITE WASTE DISPOSAL. - D. ENCOURAGE FORMS OF DEVELOPMENT WHICH FACILITATE EFFECTIVE AND ECONOMIC WASTE DISPOSAL PRACTICES AND PRESERVATION OF NATURAL SPACES. #### 3. PHOSPHATE BAN #### ZONING REGULATION Lot sizes should depend on: #### 1. Soil conditions The state of Maine uses an in-depth soil percolation method called site evaluation for subsurface waste water disposal - it includes guidelines for monitoring high ground water levels. #### 2. Environmental conditions Such considerations include size of developments, if ground water water can become contaminated with large numbers of dwellings and/or businesses. #### Building set-backs: State of Maine has established a minimum distance of 100 feet from leaching field to any river, stream, lake, pond, ocean or drinking-water supply. #### Liscourage development of shoreline: Use these areas as non-polluting recreation areas. #### hestrict high pollution generating sources: Especially ir areas that could possibly contaminate groundwater. It is possible that one of the best methods to control nutrient in-flux for a given lake is to control land use within the watershed. # NON-STRUCTURAL DEVELOPMENT CONTROL DEVELOPMENT CONTROL Lot size should be determined by actual soil type with particular interest devoted to: - 1. The soil's hydraulic capabilities - 2. The soil's purification capabilities - 3. Any physical constraints Some soils like the Carver series pecolate water rapidly but such soils are inadequate in terms of removing wastewater impurities such as bacteria, phosphorous and nitrogen. It is these impurities that can cause ground and surface water pollution. To best determine the above 3 factors a soil evaluation program should be established (the state of Maine guidelines are recommended). The site evaluation would determine whether a specific parcel of land would be considered suitable for the proposed disposal system. Slope should be another limiting factor on lot sizes; the difficulty of designing and building adequate absorption fields on steep slopes, as well as erosion problems associated with steep slopes call for further adjustment of lot sizes according to the capability of the natural slope. Other factors to be considered are ground water flow, watersheds, nearby wells and streams, topography, vegetation and ground cover. Where soil characteristics prevent adequate on-site waste disposal or if an area is heavily developed, closed system sewage disposal is recommended. Included in closed systems are: - 1. recirculating toilets - 2. gas incinerating toilets - 3. electric incinerating toilets - 4. composting toilets - 5. chemical toilets - 6. low water flush toilets - 7. vacuum toilets - 8. sewerless toilets A list of manufacturers is included in the Addenda. Investigations (Childs 1972A, Childs 1972B, Dudley and Stephensen, 1973) indicate that problem areas occur: - Where coarse sands and gravel are the principal subsoil materials. - 2. Very impermeable materials where effluent may become ponded above horizons at short distances from point of release. - 3. In poorly drained soils with high water table. #### VOLUNTARY PHOSPHATE BAN Though few studies have been made in depth, reports by Sawyer (32) and Vollenweider (17) pertaining to Wisconsin and Swiss lakes respectively indicate that when inorganic nitrogen (ammonia plus nitrate nitrgen) is equal to or greater than .3 mg/l and the orthophosphate is equal to or greater than .01 mg/l, then the lake is likely to have excessive crops of alg... and other aquatic plants. A recent study make in Vermont showed that all the lakes so tested were found to be phosphorous limited. A Cornell research team conducted a study of 13 lakes in central New York - this study led to a quantitative expression of the relation between p.osphorous loading and concentrations of algae. Phosphorous in runoff occurs in 3 general forms: - 1. Dissolved
organic - 2. Dissolved inorganic - 3. Particulated The dissolved phosphorous in both forms has a far more important influence on algal growth than has phosphorous which is attached to soil particles. Sources of Dissolved Phosphorous: Sewage - 55% Agricultural runoff - 18% Forest runoff - 15% Most lakes so studies are phosphorous limited, any reduction in their phosphorous loading may slow their eutrophication. One sure method of reducing phosphorous loading is to reduce the amount of phosphorous entering water treatment facilities and domestic waste water facilities (septic systems as phosphate detergents may contribute over 50% of the phosphorous in domestic wastewaters, eliminating this source can have a significant impact. The solution is simple: stop using detergents with phosphates and use phosphate-free detergents. A voluntary local ban or even a state wide ban of household laundry detergents and cleaning fluids containing more than .5% phosphorous. #### Advantages: - 1. Better water quality - 2. Algae free lakes and ponds - 3. No cost to state or town #### Disadvantages: - 1. There may be a slight added cost to consumer - 2. Ring around the collar #### How: - 1. Newspaper articles - 2. Local radio - 3. Town government This is classified as a long-range control technique but an immediate execution will initiate an in-lake comeback. # STRUCTURAL CONTROL TECHNIQUES - A. DIVERSION - B. CONTROLLING NUTRIENT AND SEDIMENT INFLUX - a. Locating faulty septic systems - b. Flow reducing devices - c. Controlling nutrient and sediment influx - C. SOIL EROSION CONTROL - D. SANITARY LANDFILL LEACHATE - E. SEWERING #### DIVERSION The most frequently used method to reduce lake eutrophication is to divert waste waters around or away from the lake. Diversion of nutrient-rich water away from eutrophying lakes and ponds will be encouraged by the state when: - 1. Sewage treatment plant effluent or storm sewer outflow enters a lake or pond by its tributaries or direct outfall. - Rerouting of the inflow does not have a significant negative impact on the biota or hydrologic cycle of the system, adjacent wetlands or any other riparian habitats within the course of diversion. - 3. Further treatment of waste water or storm water cannot render it nutrient-impoverished, or is not cost-effective. Little Long Pond is aquifer fed with no tributaries, hence diversion is a structural control technique that cannot be used in restoration of Little Pond. # LONG RANGE CONTROL TECHNIQUES FLOW REDUCING DEVICES Most conventional homes are presently not equipped with water-saving devices. These devices vary in design, but all basically accomplish the same results - reduce the amount of water consumption. These devices range from specially designed attachments that replace existing fistures, such as faucets or shower heads; to special in-line devices that adapt to existing fixtures. Widespread utilization of such devices by homeowners and industrial complexes will affect a substantial water savings program, reduce loads on leach fields and reduce the potential for depletion and contamination of groundwater. The twofold benefits, water saving and protection of the groundwater, coupled with low cost, shouldmake this attractive to every homeowner occupying home sites on the Carver soil series, expecially those in the watershed areas. #### DYE METHOD The often used dye test is a poor indication, defining only blatant problems because the dye may: - 1. Have a long travel time. - React in the soil and lose its fluorescent characteristics (fluorescent dye when introduced into an actdic septic tank can lose its fluorescent character) - 3. The dye may be bound in soils, especially clays. Consequently, pollution may be occurring even though the dye is not detected and the septic tank is allowed to continue polluting. - 4. Access problem - 5. High cost - 6. Many other small but complex problems. #### SEPTIC SNOOPER - A. Minimal time - B. No access problem - C. Very simple in application - D. Low cost - E. Data is more special and discriminating. - 1. This factor allows for far superior planning techniques and can represent substantial savings. This is a very useful tool in pinpointing nutrient influx by tracing septic leachate. Gives exact location of septic plumes by surveying perimeter of lake where homes are located. Estimated cost for 1 mile of shoreline on Little Long Pond about Time: 1 day. Due to high nutrient readings on outfall, septic snooper should be used along tributary between Little Long and Long Pond, roughly 750 feet in length, to locate any possible plumes. ## Controlling Nutrient and Sediment Influx Storm water, in picking up of pollutants from the land surface, becomes the transporter of degradation. The storm water run-off can discharge directly into the lake or pond or storm water can discharge sediments and nutrients into the lake or pond tributaries. Strom water run-off has the potential of picking up and carrying high level of pollutants into lakes and streams. This is expecially true where a long period without rain is followed by intensive rainfall, under these circumstances, the initial surge of run-off carries oils, fertilizers, organic matter, eroded soil as well as other forms of pollution to the aquatic ecosystem. At times, this initial surge can be more highly pollute than the effluent at the municipal treatment plant. The two basic control measures that are used are: Surface pollution should be reduced and the storm water can be treated to remove the transported matter. The structures that are used to control this sediment influx are: catch basins, sediment basins, recharge basins and settling ponds. A sediment basin is a small impoundment which retains storm water run-off long enough to allow heavier sediment particles to settle to the bottom of the basin. They can be constructed in various ways such as a dam forming a basin with run-off provided by a perforated vertical riser pipe ringed by a collar to collect trash. Periodically the basins must be attended as they fill with sediments. Construction of basins of this type would be an effective means of capturing sediments eroded from developed areas and unpaved roads. On paved areas they are aimed at catching run-off contaminat with oils and heavy metals. Basins should be located in natural depressions to reduce construction cost and diversion methods should be applied to direct run-off to these basins. (The water table at Little Long Pond will not be affected by any diversion methods as it's water budget is supplied by underground aquifers.) Sediment basins will not have a great effect on phosphorous loading, however, following major storms and thaws they will substantially affect lake visibility, turbidity and prevent sediment and oil residues. Their relatively low cost and easy maintenance (most town D.P.W.'s have equipment that can easily do this type of work) make them a very useful tool in watershed management. The reduction of surface pollution: A significant reduction in the nutrient load of storm water, can be accomplished by regulatory control measures or by other structural means such as street cleaning in the watershed area. #### Parking The area between Long and Little Long Pond is an area where such structural control measures can be used along with the preventative measure such as road cleaning the parking areas. #### SOIL EROSION CONTROL At present, this is not a problem however, as population increases the town must guard against the ever present danger of erosion. The town can do this by: - 1. Controlling land use. - 2. Develop programs that minimuze loss of soil and fertilizer on building sites, expecially where slope is a problem. The Carver soil series have low to very low water holding capacity and a rapid intake rate. Water moves rapidly through soil profile. All these factors lead to national erosion control. Extensive lawn and agricultural practices should be discouraged because of low moisture retention and nutrient holding capacity. Ground cover native to area should be encouraged. # SANITARY LANDFILL LEACHATE Little Long Fond is not affected by sanitary landfill leachate. - Landfill is located on eastern shed of Ellisville Moraine. - 2. Low metallic readings.. - 3. About 12,000 feet from landfill. #### SEWERING The ultimate aim of the Town of Plymouth or in fact any town should be a sewage system. The Cornell study recommends; firstly, a ban on phosphate detergents, then tertiary treatment of sewage plant effluent; however, sewage systems beyond tertiary are being used for mineral stripping with the end result being nearly pure water. This report deals with phosphorous removal, hence this position is only secondary, however, with all factors being considered sewering should be considered as an ultimate goal. The State of Massachusetts would encourage sewering: - 1. If septic system leachate is or will become a significant contributor to the overall nutrient flux of the lake or pond. - 2. If alternate methods of waste disposal (1.e. no-discharge waste disposal methods) are not available. - 3. If the construction of a sewer system does not encourage growth in the watershed which could lead to a significant degradation of the environmental quality of the watershed and lake ecosystem. The physical characteristics of the Plymouth soils; the number of ponds, lakes and kettleholes being fed by deep aquifers and ground water, lead to the conclusion that the ultimate goal should be a sewage system encompassing the whole cown with a tertiary treatment system that would eliminate any future danger of contamination. Eastern Massachusetts is presently plagued with outbreaks of even arterian well contamination. Human waste and industrial contamination must be contained. The cost of such systems is great - but the destruction and pollution of clean water systems will be of far greater cost to everyone. To clean contaminated water is costly and perhaps some
waters will not be able to be cleaned. Preventative methods are tantamount. # ALTERNATIVE SEPTIC WASTE SYSTEMS In areas where soil characteristics prevent adequate on-site waste disposal, the following alternatives should be considered: # Non water-using toilets The single most important non-point source of pollution in surface waters may well be nutrient loading from shoreline subsurface sewage disposal systems. The results of the Billington Sea groundwater sampling point directly to this conclusion. The prevalence of the Carver - Gloucester soil association makes not only the shoreline a target of non-point source nutrient loading, but possibly the entire watershed. Eliminating toilet discharge as a contributing factor to subsurface disposal systems would significantly reduce both the problem of malfunctioning systems and the problem of nutrient migration into ground and surface waters. It is recommended that non water using toilets be used in the following geographic areas: - 1. Islands - 2. Existing development adjacent to surface waters. - 3. On marginal soils where groundwater pollution would be a danger. Two recommended systems are: composting toilets and incinerating toilets; there are many other types such as vacuum toilets, chemical toilets, etc. but composting and incinerating toilets are the most popular. # Composting Toilets There are a number of composting toilets on the market (see Addenda) but most consist of a tough plastic container in which compostable wastes are placed, in some units the decomposition of the waste is accelerated by a heating coil at the base of the unit and aeration from a fan, which draws air through the compost and out a vent pipe. The fan runs continuously and removes all odors whereas the heating coil functions intermittently depending on room temperature. Buildings using a self-contained sewage disposal system, instead of a subsurface disposal system could reduce the amount of nutrient pollution 30-50% depending on the nutrient loading of the gray water discharge. (Uttormark et al 1974) A system for a family of 5-6, can be purchased for about \$700 and has an operating cost of \$6.00 - \$7.00 per month. #### Incinerating Toilets These toilets consist of a cabinet similar to a conventional toilet which uses propane or natural gas to incinerate the waste and an exhaust fan blows the gases out the exhaust vent. The incinerating cycle is controlled by a presect timer and lasts 15 - 20 minutes. Periodically the mineral ash in the firebox must be cleaned by a vacuum cleaner. One unit can service up to 12 people on a full-time basis. The unit is easily installed, requiring only gas and electrical connections and the attachment of a vent pipe to the outside. The price for an incinerating toilet is about \$600.00 plus delivery and installation charges. Operating costs using bottled gas would be about 6 cents per incineration cycle or about \$45.00 a month for a family of 5. Another system which uses air instead of water for the transport of sewage from the toilet is recommended for further study. The vacuum system uses only 3 pints of water per flush rather than the conventional 4-6 gallons per flush. Because of the reduced volume of liquid, the sewage is collected in a holding tank and transported to an existing treatment plant. #### IN-LAKE MANAGEMENT METHODS - A. CONTROL OF MACROPHYTES AND MICROPHYTES BY HARVESTING - B. REDUCTION OF MOTOR BOAT USE - C. CHEMICAL INACTIVATION OF NUTRIENTS - D. CHEMICAL CONTROL VIA ALGICIDES AND HERBICIDES - E. LAKE BOTTOM SEALING - F. DRAWDOWN - G. BIOLOGICAL METHODS - a. Herbivorous fish - b. Biomanipulation - H. DILUTION - I. AERATION AND MIXING OF WATER - J. DREDGING ## MACROPHYTE HARVESTING Aquatic plant harvesting is a widely used technique for in-lake management in lakes or bays with excessive local plant growths. It involves three stages to be at maximum efficiency. - 1. Cutting - 2. Collecting - A. Harvesting machines effective out to the 5 foot contour line both harvest and collect plants together with a portion of the rooted mass. - 3. Disposal - A. Front-end loader and dump truck handle the disposal process. Disposal can become difficult, however, when submersed aquatic plants approach 7 tons/acre wet weight and contain 3.2 lbs./acre phosphorous. (MacKenthun and Ingram) Large areas are needed for disposal and Plymouth has ample sand cames and sand bank erosion areas which could benefit from spreading of the harvested material. #### ADVANTAGES - 1. The primary advantage is that it is an ecologically elegent solution to nuisance plant control. Nutrients are removed from the aquatic ecosystem and are not recycled through bacterial decomposition of dead matter. Further growth may become impaired or even limited by the removal of macro-nutrients (phosphates, nitrates, carbon, etc.) - 2. No chemicals are added to the aquatic environment. - No"closing" of the lake. - A. Intervals of up to 2 weeks are necessary with chemical application. - 4. No lowering of dissolved oxygen. - 5. Controls all species - A. Chemicals have resistant species problem. - 6. No build-up of detritus. #### DISADVANTAGES - Cost: \$300 per acre was average cost in State '79 program. Towns must also assume cost of disposal. - 2. Effective only to depth of 5 feet. - 3. Does not harvest all roots. - A. Many aquatic plants reproduce by rhizome as well as seed and root. The aquatic plant harvesting program is recommended for Little Long Pond, not only for the above advantages but also because most disadvantages are overcome by the physical characteristics of Little Long Pond itself: #### Short flush time A. Suspended material would be flushed out of the aquatic system. #### Depth A. With a 5.0 foot average depth, much of the lake area is available to the harvester. #### Relatively smooth bottom A. There are no stumps or debris such as is prevalent in an artificial system. #### Elodea A. The target species is susceptible to efficient harvesting. #### Disposal - A. Dune stabilization - B. Erosion control #### Recreation A. Lake is immediately available for recreation. #### Rental Cost: 1980 state bid average cost \$250/acre. A. Town attends to disposal. DEQE Eutrophication and Aquatic Vegetation Control Program Machine Purchase: Small Chub - \$12,900 Trailer 1,250 Capable of 1 - 2 acres/day, 2 man crew, manual operation H-400 \$28,000 2 - 4 acres per day, 1 man crew, hydraulic operation Aquamarine Corp. Waukeska, Wisc. # LITTLE LOND POND Macrophyte Harvesting Map Area to be harvested Total acreage 19A. App. # Restriction of Motor Boat Use The Environmental Protection Agency and Massachusetts Resources Commission have conducted recent investigations focusing on biological effects of oil and gasoline discharges specifically; raw fuel, phenols, lead, volatile and non-volatile oil discharged by two-stroke outboard motors. - A. Since 1972 outboard manufacturers have included a recycling device to reduce discharge or unused gasoline and oil. - B. Older engines manufactured before 1972 release as high as 50% unburned fuel mixtures. However, results of the E.P.A. and state studies conclude: - 1. There is no significant adverse aquatic life impact. - Most volatile aromatic constituents of gasoline and oil evaporate. - 3. Some non-volatiles persist but are decomposed by bacteria. Most of the data gather by these studies indicates no firm support for either complete restriction, or size restriction. Little Long is a recreational lake and hence, widely used for fishing and boating - to use restrictive measures might put an unnecessary burden on both the Town and lake inhabitants. New engine designs coupled with looming petroleum shortages might solve the problem without added procedures. As new data becomes available, perhaps then, a new approach may precipitate; other eutrophic causes are major, this at present is minor. # NUTRIENT INACTIVATION This method can be used to remove nutrients that are essential for plant or algae growth by addition of chemical activators which are added to the lake. There are many activators that are used for a variety of reasons, such as, aluminum, alum, iron, ion exchange resins, polyelectrolytes, fly-ash, etc. Aluminum and iron salts can be added directly to the lake to remove phosphorous from the lake water and carry it to the sediments. The state will encourage the chemical inactivation of essential nutrients in the water column if: - 1. Only a small watershed is involved. - 2. The lake has a relatively long retention time (over .3 year) - 3. Total phosphorous in water exceeds .03 mg/1 - 4. Sediments regenerate enough nutrients to promote moderate to excessive algal growth. - When nutrient loading from the watershed is not sufficient to promote eutrophic conditions in the pond without the contribution of internal nutrient loading. Little Long Pond has an average retention time of 18 days, and most phosphorous comes from in-lake sources, not from sediment release. The end result of this technique would not solve the basic problem. Long-term effectiveness would be limited by continual nutrient input. Little Long's outfall is the major tributary to Long Pond and any such treatment would have a direct impact on Long Pond. Therefore, any in-lake procedures attempted on Little Long Pond would directly affect Long Pond. It is therefore deemed more Little Long's outfall is the major tributary to Long Pond and any such treatment would have a direct impact on Long Pond. Therefore, any in-lake procedures attempted on Little Long Pond would directly affect Long Pond. It is therefore deemed more prudent to stay with long term watershed management techniques. In activation of phosphorus release from sediments with aluminum salts appears to be a successful technique for lowering phosphorus concentration to levels limiting to algal growth when used in conjunction with a program to manage phosphorus income from the watershed. The technique has a longevity of at least
5 - 6 years and there are no known deleterious side effects to biota if proper procedures for dose determination and application are followed. Examples of EPA grants using this method: EPA 625/2 80 27 Lake restoration in Cabbossee watershed plain EPA 625/2 80 25 Restoration of Medical Lake - Washington # CHEMICAL CONTROL BY ALGICIDES AND HERBICIDES Herbicide control should NOT be used. Chemical control of algae might have to be used until suggested programs are implemented, particularly if algae blooms render Little Long Pond undesirable for recreation purposes. State aid can be applied for through the Department of Environmental Quality Engineering. Three necessary conditions are: - 1. Midday water temperatures do not exceed 27°c (80°F) - 2. Dissolved oxygen within 2 meters of surface is above 4.0 $\ensuremath{\text{mg/1}}.$ - 3. Copper in sediments does not exceed 150-300 mg/kg (dry weight). # LAKE BOTTOM SEALING Significant amounts of exchangeable nutrients are usually found in the benthos of a lake or pond and in some instances removal by dredging is recommended (ex. Morse's Pond, Wellesley) to reduce the nutrient contact. However, at a greatly reduced cost, bottom sealing has been used instead. Several covering materials are showing promist of surpressing the transport of nutrients from the sediments into the overlaying waters by either physically retarding exchange, or by increasing the capacity of surface sediments to hold nutrients. Lake bottom sealing covers can have additional advantages such as: - 1. Elimination of suitable substrates. - 2. Erosion control by bottom stabilization. - 3. Minimization of water loss by infiltration. A recent effort has been in Thirty-Acre Pond, Brockton, Massachusetts, where this technique has been applied as a corrective measure. The short-term effect of this technique seems to be desirable, however, long-range effects have still to be evaluated. Large amount of groundwater present in Little Long Pond would in all liklihood preclude the possibility of state participation in such a project. The state would consider sealing if the following conditions prevailed: - 1. If drawdown is possible. - 2. If dealing with a limited area (generally less than 1 hectare) - 3. If shallow area is being considered (littoral zone less than 5 feet.) - 4. If considerable groundwater seepage does not occur. Generally, the state prefers chemical sealants over physical. #### Physical sealants: - A. Plastic Sheeting - 1. perforated - 2. non-perforated - B. Rubber liners #### Chemical sealants: - A. Clays - B. Zeolites - C. Flyash In summary, sediment covering retards rooted plant growth, but only screen and sheeting materials have been shown to be both effective and ecologically safe. Because both of those materials are very expensive, it is generally recommended that they be used selectively -- around docks, beaches or boating areas, for example --- rather than in the entire shallow area of the pond, unless silation is rapid, one installation may last several years before plant growth can begin on top of the sheeting. Little Long Pond has too much groudwater influence to consider sealing methods. The high flush rate is one of Little Long Pond's greatest assets and should be maintained at any cost. Note: See E.P.A. policy statement for funding practices. #### DRAWDOWN In lakes and ponds where water level can be contolled drawdowns have been used to consolidate sediments, reduce their release of nutrients and kill aquatic plants. While exposed to air, sediments lose much of their water content and they may no longer release nutrients into lake water when the lake is refilled (DUNSET ETAL 1974). Beds of aquatic plants may dry out during drawdown and if their roots are exposed, some species may die or not be able to reproduce (BEARD 1973). Drawdown is not possible in Little Long at present, water-level control technology would have to be applied before drawdown could be effectively used as a short-range control measure. This and other shortcomings have the decision not to consider this technique. Responses of some common nuisance aquatic plants to lake level drawdown: Alligator weed, naiads and potamogeton spp. increase in abundance after drawdown. Chara, hyacinths and white lilies decrease in abundance after drawdown. Cabomba, elodea, milfoil and bladderwort exhibit no change or clear response after lake level drawdown. ## Lake Level Drawdown Lake level drawdown is a multipurposed lake improvement technique. It has been used to attempt control of nuisance rooted plants, to menaga fish, to consolidate flocculent sediments by dewatering, to provide access to dams, docks and shoreline stabilizing structures for needed repairs, to permit dredging using conventional earthmoving equipment and to facilitate application of sediment covers. The procedure is often an inexpensive one which can be effective in aquatic plant control where susceptible species are present and where rigorous conditions or dry, cold or heat can be achieved for 1 to 2 months. Certain species of aquatic plants are susceptible to drawdown, however, failure to achieve plant control can result not only from presence of resistent species but also from failure to achieve sufficient dewatering of lake sediments. In lakes and ponds where water level can be controlled, drawdowns have been used to consolidate sediments reduce their nutrient release and thus kill aquatic plants. While exposed to air, sediments lose much of their water content and they may no longer release nutrients into lake water when the lake is refilled. An always present danger is the failure of the lake or pond to refill, caused by insufficient watershed drainage area, drought, or delay in closing dam until too late in the season. Little Long Pond is a natural pond and with it's geologic placement drawdown is an in-lake management method not to be recommended. #### Biological Controls Biological control of rooted aquatic plants and algae through grazing activities of such organisms as fish or insects is one of the more recent experimental approaches to controlling excessive vegetation. With few exceptions, such as insect control of alligatorweed, biological control organisms are being viewed by aquatic scientists with caution since the introduction of exotic species to native waters could cause more problems then it solves. A well known example is the common carp, which was brought to this country as a food fish but has probably caused as much damage as benefit. Scientists are therefore attempting to evaluate biological control species in a step-by-step fashion. There are several different types of organisms presently being evaluated. A fungus which attacks water hyacinth has given good results and insects have been released which give at least local control of both water hyacinth and alligatorweed. The control of a particular problem species by manipulation of biotic interactions. - 1. Predator-prey relationships (the White Amur is a well documented example). - Intra and interspecific manipulation (one plant species is introduced or manipulated in order to induce a limiting condition or another.) - 3. Pathological reaction (controlling blu-green algae blooms by viruses has been attempted.) Any use of biological control methods must be approved by the Division of Fish and Wildlife. The use of biological controls on excessive growths of algae and macrophytes has not been developed to the point where any potentially effective agents are likely to be found in the near future. #### Herbivorous Fish The Mozambique Mouth-brooder has been suggested as possible controls of algae and certain rooted plants. The species thrive only in warm water (greater than 10° C or 55° F). It has become a nuisance in Florida where it was introduced to test it's ability to control rooted plants -- it's use has been discontinued. The White Amor or Grass Carp, has been widely recognized in Europe and the United States as a plant control agent. This species, a native of the Amor Basin in China and Siberia, consumes nearly all forms of vegetation and will also eat invertebrate animals. It grows rapidly, resists low temperatures and can stand low dissolved oxygen concentrations. Concern about the Grass Carp comes from past experience with exotic animals such as the Common Carp. The role of Grass Carp in cycling plant nutrients and thus in promoting algal blooms, needs further research. In Europe, the Amor are notorious spreaders of fish disease, for example, research has found a tapeworm which is a serious fish pest in Europe in some grass carp from Arkansas. This suggests the parasite could spread in this country. Some findings report no interference with game fish while others found significant declines in fish population. These and other concerns are sufficient to restrict the general use of Grass Carp as a plant control until more research has been completed. At present, only a few states allow possession of Grass Carp, except for experimental purposes. Herbivorous fish may become an important tool in plant control, but the present widespread shipment and use of Grass Carp is being done without sufficent knowledge of possible adverse effects and should be stopped until more information is obtained and shared with the public and scientific community. #### BIOMANIPULATION Several lake techniques which include altering food web of lake to favor that portion of the animal community which grazes on algae. Biomanipulation of food webs may be particularly useful in those situations where diversion of nutrient income is insufficient to lower in-lake concentration and thereby control algae growth. The next level in the food web which depends on planktonic algae is the small, free-floating animal called zooplankton. This grazen is an important food source of many fish, for example, Blue Gills, Crappies, etc. In many lakes and ponds, huge populations of small fish exist and their
predatory activities are so intense that few, if any grazing zooplankton are found in the summer. There is good evidence that in some water bodies, if the dominance of these small fish can be greatly reduced, grazing zooplankton can become a significant force in controlling algae and higher water clarity will result. The fish could be controlled or eliminated by introducing predators or by eliminating all fish followed by balanced restocking. Elimination of all fish would have the additional advantage of removing Carp, Bullheads and other fish which recycle nutrients from sediments to Biomanipulation is in the experimental stage at this the water column. time, but it is a promising approach which avoids the introduction of an exotic fish and could improve water clarity and sport fishing. Biological controls of nuisance plants and algae are largely undeveloped lake improvement techniques. In the southern part of the country, advances have been made with insects and plant pathogens, but these are largely unavailable to the general public at this time and are aimed at specific problems of aligatorweed and water hyacinths. The journal of aquatic plant management of Fort Meyors, Florida has published many articles on biomanipulation advances for control of both water hyacinths and alligatorweed. ### DILUTION Dilution is a process whereby eutrophic lake water is replaced by water lower in nutrients. A lake can be flushed out with less productive water, or it can be pumped out to another watershed and allowed to refill through rain or groundwater infiltration. Dilution simply decreases the lake waters nutrient concentrations. The advantage of dilution is that many nutrients as well as plants are removed from a lake when it is flushed out. - Sufficient quantities of low-nutrient water may not be available for such a project. - Nutrients may flow into the lake and quickly replace those flushed away. - 3. Cost problem on pumping in dilution water. The State would encourage the implementation of dilution if: - Nutrient poor water diverted from it's natural course does not have an adverse effect on it's own ecosystem. - No point sources of nutrient rich water discharge directly or indirectly into the lake. - Dilution water is well below nutrient levels which promote eutrophication. - 4. Nutrient rich sediments do not contribute significant quantities to overall nutrient flux of the lake. No clearcut advantage could be gained by using this method for two reasons: - 1. No significant source of nutrient-free water available. - Will not affect basic problems of nutrient influx from point and non-point sources. This in-lake procedure could not be used in Little Long Pond. Release of the waters into Long Pond would have a deleterious side effect. ### AERATION Aeration and circulation can be used to improve water quality for a wide array of beneficial uses including domestic water supply, downstream releases, industrial use, fish management, and algal bloom control. Maintenance of aerobic conditions may also affect nutrient exchange within the lake. Total aeration would not be encouraged by the state if aeration techniques would de-stratify a lake. Hypolimnetic aeration increases the oxygen content of a lake without de-stratifying the lake. ### Positive Effects: - 1. Reduction in sediment/water nutrient exchange. - 2. Increased habitat for fish, zooplankton, and benthic fauna. Hypolimnetic aeration would be encouraged by the state when: - Nutrient loading from watershed is not sufficient to promote eutrophic conditions in the lake without the addition of internal nutrient loading. (Little Long has a high enough nutrient level without addition by aeration). - 2. Where concentrations of DO in the hypolimnion are less than 3.0 mg/l and are not the result of natural springs or ground water seepage. - (Dissolved oxygen in Little Long is never this low; dissolved oxygen in aquifers leading into Little Long is relatively high). - 3. When an increase in hypolimnetic oxygen will significantly decrease the loss of nutrients from sediments in the water column and internal nutrient loading is an important factor contributing to the occurrence of planktonic algal blooms. Little Long Pond with it's physical characteristics, i.e. shallow depth (5 ft. average); surface area (45 acres); and high flush rate (18 days average) make it an unsuitable candidate for any long-range benefits from any aeration or circulation techniques. Wind, sun and flow would be enough to maintain high DO rates if the nutrient influx problem was solved or even curbed. Note 500 policy statement of EPA. ### DREDGING Dredging removes nutrient rich sediments and rooted aquatic plants from shallow water areas. A lake's annual process of self-fertilization and subsequent release of nutrients from sediments to overlying waters may, for some lakes, be one of the primary sources of the lakes nutrients. Dredging has often been suggested as a means for removing nutrients stored in sediments. The sediments are usually rich in nitrogen and phosphorous and represent an accumulation of years of settled organic materials. Some nutrients may be recirculated within the water mass and furnish food for a new crop of organic growth. However, in an undisturbed mud-water interface nutrient transfer is very small. ### The state encourages dredging if: - 1. Nutrient loading is not from external sources. - 2. Removing substrate would promote plant growth. - 3. Sediments are important source of nutrients. - 4. No toxic sediments are released during dredging. - 5. Dredging will not increase water turbidity. - 6. Dredged areas are less than 15 feet deep. - 7. Does not affect downstream wetlands. - 8. Dredged sediments do not pose a health or environmental problem. ### Some problems encountered in dredging: - 1. Nutrient content does not change drastically. - 2. A possible resulting shift from rooted plants to algae. - 3. The buffering capacity of a lade to external changes in nutrient loadings may be lowered. - 4. Resuspension of fine particle and plant nutrients. - 5. Toxic substnaces may be released in water color. - 6. May destroy the community of Benthic organisms which are important to the fish - 7. Disposal site discharge problems Morse's Pond in Wellesley has been dredged after two or three nutirent inactivation efforts. Dredging was applied to reduce lily growth, but after a short period of time, Milfoil took over as a target species. This project was funded under 314. Before such a costly, chancey method is used, the more positive, longrange efforts should be put into effect, combined with in-lake methods as recommended in this report. ### ENVIRONMENTAL IMPACT Land Use No effect on residential, agricultural, park, scenic, historical, archeological. No changes in land use patterns. Physical No construction other than sediment basins. Air Quality No effect. Hydrology No effect, no diversion, dredging or construction. Aquatic Life Fish or aquatic organisms - no adverse effect, possible beneficial effects. Cultural Impact None. Economic Environment None. Resource Impact None. Energy Use Not applicable. Social Environment Beneficial, better water quality Displacement of People No. Changes in Noise Levels None. Effect on Flood Plain, Management or Wetlands None. Dredging and Other Channel, Bed or Shoreline Modifications None. Feasible Alternatives to Proposed Project None. Other Necessary Mitigative Measures None. Will the project adversely affect short term or long term ambient air quality? No. Will project be located in flood plain?No. Will structures be constructed in flood plain?NO. Will the project have a significant adverse effect on fish and wildlife, wetlands or other wildlife habitate?No. Will the project adversely affect endangered species?No. Are there other measures not previously discussed which are necessary to mitigate adverse impacts resulting from the project?NO. ### CONCLUSION In most lakes the short retention time of about 50 days would be more than adequate to flush the system, and if the soil series were different the problem would more than likely be within 100 feet of the shoreline; however, on the basis of this report, a broader range of recommendations, and long-range zoning programs are strongly recommended in order to cover the broad spectrum of contributing non-point sources. It is not physically possible for the soil series to tie up, ionically, any appreciable amount of non-point source loading. How much the watershed is involved will be better determined when data from other lakes and ponds in the area becomes available. This report has enumerated counter pollution measures such as a voluntary ban on high phosphate detergents; this is considered a very important step - this ban could eliminate 50% of the phosphorous input from domestic sewage or about .8 kg. phosphorous per capita per year. The only cost would be ads in newspapers, radio or any source at the commissions disposal. It is also recommended that the "Septic Snooper" be applied to locate faulty septic systems and that such systems be replaced with non-water using systems. "The results of the Lake Region Planning Commission ground-water sampling and soil retention study have indicated the effluent from subsurface sewage disposal systems is a primary source of water pollution." There are so few houses around the pond that the cost would be more than off-set by the results. One or two faulty systems would have a disastrous effect on so small an impoundment. To put teeth into local and state laws it is strongly suggested that the definition of pollution be revised to include acceptable nutrient levels. The outfall shows such a jump in phosphate readings an added emphasis should be made to used snooper through it's short length. The high volume of flow coupled with high nutrient readings endanger Long Pond and if continued, time would favor a shift from
oligotrophic to a eutrophic state of this valuable lake. Stormwater run-off problem can be solved by initiating catch basins, recharge basins, settling pond and sediment basins; all of which can be designed and implemented by local D.P.W. and engineers. Street cleaning equipment to be used in the parking area. Zoning and percolation tests should be upgraded to the Lakes Region Planning Commission, State of Maine soil evaluation concept and Maine and New Hampshire set backs with lot sizes based on soil and ground water criteria. Harvesting out to a 5 foot contour line will give some immediate relief until long range techniques can be implemented and results achieved. Water saving devices should be used as both a conservation saving method and for aquifer protection. Any faulty septic system that is made evident by the septic snooper should be redone with consideration given to the use of closed systems, especially those around the shore line. A complete updating of all septic systems in the watershed area. Little Pond does not have tributaries and it is mainly feed by the non-confined aquifer. The end conlcusion has to be point and non-point nutrient influx. There are no outside agriculture influences. The nearest agriculture impact is over 12,000 feet away. The aquifer must be protected by long range control techniques, controlling nutrient influx and by water shed management control procedures as previously set forth. It is strongly suggested that the houses around the pond should be checked to see if any plumes are finding their way into Little Long by means of septic snooper. Any contamination here has a direct effect on Long Pond . (see flow data and nutrient loading tables) ### Management Plans ### Time Schedule Any programs implemented on Little Long Pond will be directly managed by the Plymouth Conservation Commission and coordinated with any other town departments that are needed. The voluntary phosphate ban should take place immediately Two year harvesting program 1981-1982 Sediment basins - engineering study by D.P.W. Construction of non-water using toilets where needed Water-saving devices to be used Water-saving devices to be used in the parking area Street cleaning equipment Septic snooper program 1981 Updating faulty septic systems 1981-1982 Zoning laws should be updated to include aquifer protection Pollution laws revised and updated to include nutrient concentration ### ADDENDA The following data will provide the Town of Plymouth with necessary information to justify application to the U.S. Environmental Protection Agency for 50% matching funds to conduct the proposed programs, as authorized by Section 314 of the Federal Water Pollution Control Act Amendments of 1972 (PL 92-500) The preceeding report has established: - 1. Water quality of Little Long Pond - 2. Lake restoration procedures - 3. Environment Impacts - 4. Expected results - 5. Management Plans Funding by the Commonwealth of Massachusetts: 722-1969 - DEQE amended general laws Chapter 40, Section 5 and Chapter 111, 5F (A copy of this act is included in Addenda) This usually covers chemical control and harvesting of aquatic nuisances. Chapter 91 under DEQE, Waterways Div., is for dredging programs 208 covers sewage construction. Little Long satisfies the anticipated benefits to the public. Its immediate impact on and possible degradation of Long Pond, one of the most used ponds in South Eastern Massachusetts. ### ADDENDA ### Revision of Pollution Definition The general approach is to stress violation of coliform bacteria standards, research shows that nutrient pollution over a period of time is as important, or may be more important than bacterial pollution. A set of general standards should be put forth and it is suggested that violation of nutrient standards be incorporated in the pollution standards. ### GENERAL GUIDELINES | •6 | | | | | | |-------------------------|-----------|---------------|------|-----|----------| | | Permi | ssible Levels | s | | Critical | | Total phosphorous mg/1 | | .025 | | | .04 | | Orthophosphorous mg/1 | | .004 | | | .01 | | Organic Nitrogen mg/l | | . 20 | | | .40 | | Ammonia mg/l | | .02 | | | .05· | | Nitrate mg/1 | | .10 | | st. | .25 | | Nitrite mg/1 | less than | .001 | | | .002 | | Inorganic Nitrogen mg/l | | .12 | Sec. | | .30 | | | | | | | | Incorporation of the above nutrient levels in the general pollution standards would be a positive approach toward solving the problem of nutrient loading from all sources and would redefine pollution as it is generally understood. ## FEDERAL LEVEL: ENVIRONMENTAL PROTECTION AGENCY OFFICE OF WATER AND WASTE MANAGEMENT Project grants (copporative agreements) are available for the construction of municipal wastewater treatment works including privately owned individual treatment bystems if a municipality applies on behalf of a number of such systems if a municipality applies on behalf of a number of such systems. Such works may serve all or portions of individual communities, motropolitan areas or regions. The project may include but may not be limited to treatment of industrial wastes. The program is considered suitable for joint funding with closely related federal financial assistance programs in accordance with OMB Circular No. A-111. The grant may be for 75 percent of eligible project costs or 85 percent for innovative or alternative technology projects. Programs have ranged from \$075 to \$290,800,000 with an average of \$4,000,000. FY 80 estimated obligations are Any municipulity, inter-municipul agency, slate, or interulate agency having jurisdiction over waste disposul is eligible for assistance under this program. It is available to each state, the District of Columbia, and each territory or possession of the United States. Proapplication assistance is available through the state water pollution agency or the appropriate EPA regional office. Applications must be submitted through these agencies. Applications are subject to state and arenwide clearinghouse review. An environmental assessment is required which may lead to the requirement for an environmental impact statement. Approval or disapproval normally requires 90 days. Contact: Information may be obtained from the state water pollution control agency or the appropriate EPA regional office. Qrants (106 Grants). Formula grants and interstate Program Orants (106 Grants). Formula grants are available under this program for the establishment and maintenance of adequate measures for prevention and control of water pollucion. Broad support is available for permitting, pollution control studies, planning, surveillance, and enforcement. Advice and assistance is available to local agencies. Training and public information are also available. Funds cannot be used for construction, operation or maintenance of waste treatment plants nor for costs financed by other federal grants. This program is considered suitable for joint funding with closely related federal financial assistance based for constance with OMB Circular No. A-111. with an average of \$038,000. IY 80 estimated obligations are \$48,730,000 for grants. State and interstate water pollution control agencies are eligible for funding under this program. It is available to each state, the District of Columbia, and all territories and possessions of the United States. Informal meetings are held between the regional office and state applicant agency concerning program preparation. Applications are subject to state and areawide clearing-house review. Completed application forms must be submitted to the appropriate EPA regional office, Grants Administration Brunch. Suggested dates of submission are June 1 for draft state/EPA agreements and no later than September 1 for final state/EPA agreements. Approval or disapproval time normally takes 30 days. Contact: Information may be obtained from the appropriate EFA, regional office. 3. Water Pollution Control - State and Areavide Water Quality Hanagement Planning Agency (Section 200 Grapta). Project grants are provided to areavide and state planning agencies to develop a water quality management plan for the area or areas approved by the appropriate regional EPA administrator. This program is considered suitable for Joint funding with closely related federal financial assistance programs in accordance with OMB Circular No. A-1]1. The federal assistance rate in 75 percent for all grants. The range of financial assistance has been from \$100,000 to \$4,000,000 with an average of \$440,000. Fy 80 estimated obbligations are \$40,000,000. This program is available to a local or regional planning agency designated by the governor or appropriate local officials and approved by the administrator or EPA as the official aroundo waste treatment management planning agency. The program is available to each state, the District of Columbia, and all territories and possessions of the United States. Preapplication coordination with the appropriate regional EPA office is recommended. Applications are subject to state and areawide clearinghouse review. Standard applications are submitted to the appropriate EPA regional administration forms are furnished by the agency. Grant applications are submitted to the appropriate EPA regional administration office. In the case of an area designated by the governor, the application and supporting data must be submitted by the state reviewing agencies prior to submission to EPA. In interstate cases, the application must be submitted to the governor of the state wherein the greatest portion of the planning area lies. Grant applications must be submitted according to dates established by the regional EPA administrators. Approval or disapproval time normally is 45 days. Contact: Information may be obtained from the regional EPA offices. 4. State Underground Mater Source Protection Program Grants. Under this program project grants are available for the development and implementation of
underground injection control programs adequate to enforce the requirements of the state drinking water act. Pederal useistance is limited to 75 percent of eligible costs, not to exceed the state allotment. This program is considered suitable for joint funding with closely related federal financial assistance programs in accordance with OMB Circular No. A-111. FY 80 estimated obligations are \$7,785,000. State agencies designated by the governor or the chief executive officer by one of the states, the District of Columbia or any of the U.S. territories or possessions which has been listed by the EPA administrator as requiring an underground injection control program are eligible for funding under this program. Proupplication coordination with appropriate regional offices is recommended. Grant applications are submitted to the appropriate EPA regional administrator. Applications are subject to state and areawide clearinghouse review. Approval or disapproval time is approximately 45 days. Contact: Applicants should contact the appropriate EPA regional office for information concerning this program 5. Solid and Hazardous Management Program Support Grants. Formula grants and project grants are available to assist in the development and implementation of state and local programs and support rural and special communities in programs and projecte leading to the solution of solid of facility planning, feasibility studies, expert consultation, aureys and analysis of market needs, marketing of recovered resources, technology assessment, legal expenses, construction feasibility studies, source preparation programs any be used by special communities for conversion, improvement or consolidation of existing solid waste disposal facilities or for convertion of new facilities or for construction for satisfing solid waste disposal facilities or for construction of new facilities or for construction of new facilities. Assistance is also available to low population municipal- meeting requirements of restrictions on open burning or other requirements arising under the Clean Air Act or the Foderal Mater Pollution Control Act. This program is considered suitable for joint funding with closely related federal financial assistance programs in accordance with the Circular No. A-111. The federal share of a project may be up to 75 percent although 100 percent may be funded for conducting inventories of open dumps. Financial ausistance has ranged from \$71,500 to \$1,318,200 with an average of \$250,000. Fy 80 estimated obligations are \$805,000. State and substate solid waste agencies, authorities and organizations in all states, the District of Columbia, Puerto Nico, the Virgin Islands, Guam, American Samou, and the Mariana Islands are eligible for funding under this project. cations are submitted to the appropriate EPA regional grants administration office. The staff at the appropriate Jects involving major construction or siting. state and areawide clearinghouse review. Environmental upon the type of application. Applications are subject to or disapproval time ranges from 30 to 90 days depending evaluation to determine adequacy in relation to grant regucation. office is available to assist in preparation of the appliconservation and recovery projects are solicited in the The standard application forms furnished by the agency are required for this program. Preapplications for resource impact assessments may be required for implementation prolations and to technical and program evaluation. teria. Commerce Dusiness Daily and evaluated with published cri-Requests for application forms and completed appli-Applications are subjected to administrative Approval Contact: Information may be obtained from the appropriate EPA regional administrator. G. Solid Maste Management Demonstration Orants. Project grants are available to promote the demonstation and application of solid waste management and resource recovery technology and assistance which preserve and enhance the quality of the environment and conserve resources and to conduct solid waste management and resource recovery studies investigations and surveys. This program is considered suitable for joint funding with closely related federal financial assistance programs in accordance with OHD Circular No. A-111. Resource recovery system demonstration projects may be funded up to 75 percent by this federal programs. Construction of new or improved solid waste disposal facilities serving an area of only one municipality may be funded up to 50 percent of eligible project costs, or 75 percent in any other cases. State, interstate, municipal, intermunicipal, or other public authorities and agencies are available for the vari- ous components of this program. In addition, public or private colleges and universities and private nonprofit aggness and institutions are available for the resource recovery systems demonstration projects or for the construction of new or improved solid waste disposal facilities. All states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, American Samoa, and the northern Mariana Islands are eligible for assistance under this program. Standard application forms are furnished by the agency for this program. Requests for application forms and completed applications are submitted to the Environmental Protection Agency, Grants Administration Division. Applications are subject to state and areawide clearinghouse review. An environmental impact assessment is required only for major demonstration and construction projects. Approval or disapproval time normally takes 80 days. Contact: Information may be obtained from the appropriate EPA regional office. ## OFFICE OF RESEARCH AND DEVELOPMENT ments, other public or private nonprofit institutions, and financial assistance was \$08,304. FY 80 est Lions are \$20,800,000 for grants. This promunagement mental, and environmental systems to use in environmental requirements associated with energy, to identify, develop research to determine the environmental effects and control Project grants are available under this program to support pospitals able for public and private state universities and colleges In accordance with ONB Circular No. A-111. Projects must in accordance with ONB Circular No. A-111. Pinnucial assistant and muchanisms for those in the economic, social, govern-Grunts may also be used to explore and develop strategies nutive strategies for pollution control of energy systems and demonstrate necessary pollution control techniques, possemsion of the United States including the District of individuals who have demonstrated unusually high scientific to evaluate the economic and social consequences of aller-Environmental Protection - Consolidated Research Grants. It is available to each state, territory and laboratories, state and local government depart-This program is suitable for joint funding This program is avail-FY 80 ostimated obliga-FY 79 average Proapplication discussions with the EPA program office is advisable. Standard application forms must be used. Requests for application forms and completed applications must be submitted to the EPA Granto Administration Division. An environmental impact assessment is required. Approval or disapproval normally takes 80 days. Contact: Individuals are encouraged to communicate with the appropriate EPA regional office. For information on grant applications and procedures, contact the Environmental Protection Agency, Grants Administration Division, Ph-216, Washington, D.C. 20460. For program information, contact the Environmental Protection Agency, Office of Research and Development, RD-074, Washington, D.C. 20460, (202) 755-8787. 2. Solid Waste Disposal Research Grants. Project grants are available to promote and support the coordination of research and development in the area of collection, storage, utilization, and salvage or final disposal of solid waste. The program is considered suitable for joint funding with closely related federal financial ansistance programs in accordance with OMB Circular No. A-11. Those grants require a minimum of 5 percent cost sharing. Financial ausistance has ranged from \$10,000 to \$359,000 with an astimated average in FY 79 of \$80,000. FY 80 estimated obligations are \$2,500,000 for grants. The program is available to public or private agencies; public, private, state universities and colleges; state and local governments; and individuals in each state, territory and possession of the U.S. including the District of Columbia. Preapplication discussion with the EPA program is advisable. Requests for required standard application forms and completed applications must be submitted to the EPA Grants Administration Division. An environmental impact assessment is required. The range of approval or disapproval time is 90 days. Contact: Individuals are encouraged to communicate with the appropriate EPA regional office. Information concerning grant applications and procedures may be obtained from Environmental Protection Agency, Grants Administration Division, PM-216, Washington, D.C. 20460. Program information may be obtained from the Environmental Protection Agency, Office of Research and Development, RD-674, Washington, D.C. 20160, (202) 755-8767. 3. Water Pollution Control Research, Development, and Demonstration Grants. Project grants are available under this program to support and promote the coordination and acceleration of research, development, and demonstration projects relating to the causes, effects, extent, preven- tion, reduction, and elimination of water pollution. The program is considered suitable for joint funding with closely related federal financial assistance programs in abcordance with OMB Circular No. A-111. Grants under cortain sections of this program require a minimum of 5 percent cost sharing, while the remainder require 25 percent cost sharing. Research grants have ranged from \$1,000 to \$772,912 in FY 78 and
79 with an average in FY 79 of \$91,710 and a projected average for FY 80 of \$75,000,000 in FY 78 and 79 with an average for \$37,506 to \$0,500,000 in FY 78 and 79 with an average for \$131,330 in FY 78 and 79 with an average is \$100,000. FY 80 outlinated demonstration grant average is \$100,000. FY 80 outlinated obligations are \$17,608,000 for research and demonstration grant average is \$100,000. This program is available to public, private, state and community university and colleges, hospitals, laboratories, state water pollution control agencies, interstate agencies, etale and local governments, other public or private non-profit agencies, institutions, and organizations in each state and all territories and possessions of the United States including the District of Columbia. Grants may be awarded to individuals who have demonstrated unusually high scientific ability. Grants under cortain sections of this program may be awarded to profit-making organizations. Preapplication discussion with the EPA Program Office is advisable. Requests for the required standard application forms and completed applications must be submitted to the Environmental Protection Agency Grants Administration Division. Demonstration grant applications are subject to state and areawide clearinghouse review. An environmental impact assessment is required for this program. Range of approval or disapproval time is 90 days. Contact: Individuals are encouraged to communicate with appropriate EPA regional office. Information concerning grant applications and procedures may be obtained from the Environmental Protection Agency, Grants Administration bivision, PM-216, Wasaington, D.C. 20460. Program information may be obtained from the Environmental Protection Agency, Office of Research Program Nanagement, ND-674, Washington, D.C. 20460, (202) 755-8787. ## OFFICE OF PLANHING AND MANAGEMENT 1. Loun Guarantees for Construction of Treatment Works. Guaranteed/Insured Ioans are available to assist and sorve no an incentive in construction of municipal sewage treatment works which are required to meet state and federal water quality standards. The program is designed to insure that inability to borrow necessary funds from other sources on reasonable terms does not prevent the construction of any wastewater treatment works for which a grant has been or will be awarded. Applications for long guarantees will be limited to financing certain portions of the eligible and allowable local share of a grant for construction of wantewater treatment works. EPA guarantees the loan from the Federal Financing Bank. A state, interstate agency, a municipality, or an intermunicipal agency which has applied for a construction grant under Title II of the Clean Nater Act or which has committed itself to finance the local share of any project for which a grant has been awarded or for which an application is being processed are eligible for funds under this program. It is available to each state, territory and possession of the United States including the District of Columbia. Prehipplication consultation with the appropriate EPA liegional Construction Grants and Grant Administration Offices is recommended. Application is made through the state agency to the appropriate EPA regional office. Feed are charged for processing of the application and for issuance of a commitment to guarantee. If the application is approved by the EPA administrator, loan guaranteed contracts will be issued to the federal financing office which disperses funds. Contact: Contact the appropriate regional office of the EPA for information concerning this program or Environmental Protection Agency, Grants Administration Division, PM-216, Washington, D.C. 20460, (202) 755-0850. STATE/LOCAL PROGRAMS STATE LEVEL: MARYLAND DEPARTMENT OF NATURAL RESOURCES Wuter Resources Administration clus Inkes Program (Federal). No agency has been officially designated to administer 314 Clean Lakes applications and 314 Clean Lakes grants from the Environmental Protection Agency. The Water Resources Administration has been involved with 208 Planning and some of the 208 Regional Planning Commissions have applied for and received 314 Clean Lakes funding. At the present time, the local project sponsor is required to provide matching monios. Contact: Maryland Department of Natural Resources, Water Rosources Administration, Tawes State Office Building, Annapolis, Maryland 21401, (301) 209-2224. 2. Program Open Space. The Department of Natural Resources provides financial assistance in the form of grants (formula allotment) to local governmental units for the development of park and recreational facilities. Half the monies received by the local community may be used for land acquisition and half for recreational development. A 25% match is required of the local sponsor on the portion that applies to recreational development. No match is required on the development. Contact: Appropriate county office or Maryland Department of Natural Resources, Program Open Space, Tawes State Office Building, Annapolis, Maryland 21401. STATE DEPARTMENT OF HEALTH 1. Mater, 1co and Sowerage Program. This program provides grants to countles and municipalities for sewage and contral source system development. Monies are to be used to provide a matching funding for the federal Sowage Construction Grants Program (projects must qualify for federal aid). The state will cost share 50% (the other 50% to be provided by the local sponsor) of the confederally funded portion of project costs on a 75% federal grant and 75%/25% (state) local) on a 85% federal grant. Contuct: Maryland State Department of Houlth ### STATE/LOCAL PROGRAMS ATE LEVEL: MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL QUALITY ENGINEERING Division of Waterways 1. Eutrophication and Nuisanco Aqualic Vegetation Control Program. This program involves a preapplication and final application process in order for a community to receive funds for controlling a problem in their lake. Formerly a simple weed control program, this program now gives first priority to projects which seek to solve the entrophication problem at its source. The complete span of restoration problem at its source. The complete span of restoration techniques are eligible for funding (about \$120,000 available statowide during FY 80). The usual applicant is a city or town through the board of selectmon, conservation commission, health department, etc. This program is expected to be transferred to the Division of Water Pollution Control in order to consolidate and coordinate all lake functions state-wide. Contact: Massachusetts Department of Environmental Quality Engineering, Division of Waterways, Room 532, 100 Nashua Street, Buston, Massachusetts 02114, (617) 727-4797. Division of Water Pollution Control (314 designated agency) 1. Massachusetts lakes Program. This program embodies the state of som program. Activities include statewide lake classification studies, diagnostic-feasibility studies, water assistance research toum surveys (WART strikes), 314 coordination and project application administration, limnological data publication, state project priority listing, lake association assistance, coordination of federal-state-local lake renabilitation efforts, and related activities. Legislation presently under review, if successful, would provide up to \$2,000,000 in state matching funds for 314 projects as well as provide a firm legislative mandate for administering a statewide lakes program. Contact: Massachusotts Department of Environmental Quality Engineering, Division of Water Pollution Control, P. O. Box 545, Westborough, Massachusetts 01581, (617) 366-9181. 2. Accolorated Water Pollution Control Program (Ch. 2). Sect. 31). This program provides grants to public entities representing several municipalities for regional sewage and water pollution abatement planning. Grants are not to exceed \$15,000 per public entity. Contact: Massachusetts Department of Environmental Quality Engineering, Division of Water Pollution Control, 110 Trement Street, Desten, Massachusetts 02108. 3. Research and Demonstration Projects and Facilities. The bivision of Water Pollution Control can provide technical assistance and grant aid for studies and demonstration projects involving innovative ways of treating sewage. Anyone with appropriate ideas, including consultants, universities, equaminities, etc., may apply. \$1,000,000 has been sutherized for FY 80. In the past, this program provided some matching monies for the 314 Clean Lakes Program before emphasis shifted to sewage treatment. It is unlikely that it will be used to match 314 funds in the future. Contact: Massachusetts Department of Environmental Quality Engineering, Division of Water Pollution Control, P. O. Box 545, Westborough, Massachusetts 01581, 208 Regional Planning Commissions The 208 designated Regional Planning Commissions have been especially active in Massachusetts and have coordinated their efforts with the Department of Environmental Quality Engineering to provide information on priority lakes and to organize public meetings to involve the public in lake restoration plans and projects. Contact: Local Planning Office or Department of Environmental Quality Engineering, 208 Planning Division, 100 Cambridge Street, Boston, Masnachusatta 02109. EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS Division of Conservation Bervice 1. Solf-Help Program. The Division of Conservation Service provides grants to Hunicipal Conservation Commissions to ever up to 50% of the costs of land acquisition for passive recreational use. Piling deadline for applications is August 31 each year. Only land acquisition costs are ell-gible and only Hunicipal Conservation Commissions may apply. Contact: Executive Office of Environmental Affairs, Division of Conservation Service, John Saltonstahl Building, 100 Combridge Street, Boston, Massachusetts 02108. 2. Orban Solf-Holp Program. The Division of
Conservation Service relations focal Park and Recreation Commissions of manicipalities with a population of greater than 35,000 for up to 80% of the costs of land acquisition for park and recreational facilities. Only land acquisition for mark and cluding appraisals) are eligible for relaburament. Applications should be in by August 31 each year. This program is due to end in Jame 1980 but extension of the program is being requested. Contact: Executive Office of Environmental Affaire, Diviukan of Connervation Sorvice, John Sattonainhi Buliding, 100 Cambridge Street, Newton, Maganchundth Ozion MASSACHUSETTS CONGRESS OF LAKE AND FORD ASSOCIATIONS, INC. The major activity of the Congress is to forward the cause of lakes and pends on every front. Their constitution states the purposes as follows: - 1. To perform all acts appropriate to a nonprofit, scientific, literary, and educational corporation dedicated to the promotion and development of environmental quality standards essential for satisfactory life styles and conditions in the natural community. - 2. To preserve the nesthetic, recreational, and commortal values of lakes and lakeshore properties through the maintenance and improvement of such environmental factors as watershed ecology, water qualty, lake water levels, shoreline woodland management, agricultural soils practices, recreational and restdential building standards, and related influences, such as water and boating eafety. Darely one year old, the Congress is only just beginning to grow and continuously experiments in innovative ways to become effective for the cause of lakes and pends. As their expertise increases the Congress should be able to centribute more and more to the state and federal lake efforts in Massachusetts. Contact: Massuchusetts Congress of Luke and Pond Associations, Inc., P. O. Box 312, Westminstor, Massachusetts 01473. STATE LEVEL: MICHIGAN DEPARTMENT OF NATURAL RESOURCES Land Resource Programs Division 1. 314 Clean Lakes Program (Foderal). The Department of Natural Resources is the agency designated to administer the 314 Clean Lakes Program. They are able to provide technical assistance to lake boards (special districts empowered to museus for and engage in activities related to lake imprevenging in-lake pollution control measures and engineering in-lake pollution control measures and in-kind match for federally-funded 314 Clean Lakes projects. Contact: Michigan Department of Natural Resources, Land Resource Programs Division, Inland Lake Management Unit, Stoven T. Mason, Duliding, Lansing, Michigan 48926, (617) 273-8000. Clean Lakes Program U.S. E.P.A. Policy on Grants Funding preferences will be given to projects which eliminate pollutant sources and reduce pollutant loading in contrast to projects relying solely on in-lake activities to ameliorate the symptoms of lake degradation without attacking it's causes. E.P.A. emphasizes lake watershed management in making funding decisions. This policy does not mean that in-lake restoration techniques will not be supported. Dredging, aeration, nutrient inactivation and other in-lake techniques are important lake restoration tools in two situations. Lakes which have problems of excessive shallowness and rooted aquatic plants may benefit most from dredging, harvesting, sediment covering or lake level drawdown, while lakes which have excessive algae may respond to dilution/flushing, nutrient inactivation or aeration. In some cases a combination of procedures may prove to be most beneficial. - When sufficient pollutant reduction is being accomplished in the watershed to allow desired lake quality to be maintained, but recovery from degraded condition will be slow or will not occur simply as a result of watershed management. - When material accumulated in the lake constitutes a significant source of pollutants which is independent of controllable activitie in the watershed. Examples of E.P.A. grants using in-lake restoration methods: - E.P.A. 625/2 80 27 Lake restoration cobbossee watershed Maine used nutrient inactivation treatment. - E.P.A. 625/2 80 25 Restoration of Medical Lake Washington used nutrient inactivation treatment. ### The Clean Lakes Program Section 314 of the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500)* directed the United States Environmental Protection Agency to assist the States in controlling sources of pollution which affect the quality of freshwater lakes, and in restoring lakes which have deteriorated in quality. EPA is fulfilling this mandate with the Clean Lakes Program, which provides technical and financial assistance to the States to: - Classify publicly owned freshwater lakes according to trophic condition; - Conduct diagnostic studies of specific publicly owned lakes, and develop feasible pollution control and restoration programs for them; - Implement lake restoration and pollution control projects. Assistance is made available to the States through the EPA Regional Offices in the form of cooperative agreements. Because program funds are limited, and the number of publicly owned lakes with present or potential water quality problems is large, awards must be made selectively. Projects chosen for funding are those which maximize public benefits. Such projects meet three general criteria. First, projected public benefits must be significant. A lake to be studied and restored or protected should be one which can provide beneficial uses to a large number of people. Second, the water quality improvement must be long term, to insure lasting benefits. EPA will not support restoration measures which merely ameliorate symptoms of pollution in a lake. Instead, the Agency emphasizes watershed management — a comprehensive effort to identify and eliminate present or potential causes of lake water quality deterioration. Pollution is to be controlled at its source, not in the lake. When pollutant sources ^{*}Now known as the Clean Water Act of 1977 (P.L. 95-217). are being controlled, however, in-lake restoration techniques to speed recovery are also eligible for funding. Finally, projects should promote integrated, coordinated water quality management. Other Federal, State and local programs can supplement the Clean Lakes Program. For example, the 201 Construction Grants Program can complement a lake restoration agreement by helping municipalities eliminate pollution from domestic sewage. U.S. Department of Agriculture assistance is available to farmers to implement agricultural pollution control measures, supplementing Clean Lakes Program watershed management. Combining water quality management resources in this way enhances the effectiveness of expenditures under any single program. ### THE CLEAN LAKES PROGRAM This section is summarizes the Clean Lakes Program -- its legislative basis, regulations, program description, application procedures, and results to data. ### Legislative Basis Section 314 of the Clean Water Act of 1977 is the legislative basis for the Clean Lakes Program. SEC. 314. - (a) Each State shall prepare or establish, and submit to the Administrator for his approval - - (1) an identification and classification according to eutrophic condition of all publicly owned freshwater lakes in such State: - (2) procedures, processes, and methods (including land use requirements), to control sources of pollution of such lakes; and - (3) methods and procedures, in conjunction with appropriate Federal agencies, to restore the quality of such lakes. - (b) The Administrator shall provide financial assistance to States in order to carry out methods and procedures approved by him under this section. The Administrator shall provide financial assistance to States to prepare the identification and classification surveys required in subsection (a)(1) of this section. - (c) (1) The amount granted to any State for any fiscal year under this section shall not exceed 70 per centum of the funds expended by such State in such year for carrying out approved methods and procedures under this section. - (2) There is authorized to be appropriated \$50,000,000 for the fiscal year ending June 30, 1973; \$100,000,000 for the fiscal year 1974; \$150,000,000 for the fiscal year 1975; \$50,000,000 for the fiscal year 1978; \$60,000,000 for the fiscal year 1978; \$60,000,000 for the fiscal year 1979; and \$60,000,000 for the fiscal year 1980 for grants to States under this section. These sums shall remain available until expended. The Administrator shall provide for an equitable distribution of such sums to the States with approved methods and procedures under this section. ### Restriction of Awards One of the ways in which the Clean Lakes Program will effect this coordination is by limiting award of Federal lake funds to areas that are applying an integrated watershed management approach. Before making an award, the Regional Administrator must determine that any water pollution control measures in the lake's watershed authorized under section 201, included in an approved 208 plan, or required by section 402, have been completed or are proceeding on approval schedules [40 CFR 35.1650-2(b)(2)]. ### Goals The goal of the Clean Lakes Program is to implement, through assistance to the States, methods and procedures to control sources of pollution to the Nation's publicly owned freshwater lakes and to restore degraded lakes. Recognizing, however, that this applies to all publicly owned lakes and several thousand may need immediate action, the program has established a more specific goal for the 1980-1985 period. The goal is to protect at least one lake whose water quality is suitable for contact recreation, or to restore a degraded lake to that condition, within 25 miles of every major population center. A population center, in this context, usually is a Standard Metropolitan Statistical Area (SMSA) as defined by the U.S. Bureau of the Census. However, this definition will be applied with discretion in selecting
projects for funding. Some SMSAs are so populous that a single clean lake would not be sufficient to meet user demand. Conversely, in SMSAs near the ocean beaches, bays, large rivers, or the Great Lakes, there may be little demand for lake protection or restoration. In vacation and tourist areas where seasonal populations are high, and in other situations where lake water quality is important to regional economy and quality of life, projects may warrant priority equal to that accorded urban lakes. More explicit guidance on this aspect of project selection will be developed, but the need for flexibility will never be eliminated. ### TECHNICAL AND FINANCIAL ASSISTANCE PROGRAMS As discussed in earlier sections, the Clean Lakes Program provides up to \$100,000 per award and requires a 30 percent non-Federal share for Phase 1 diagnostic-feasibility studies. Phase 2 awards are available for pollution control and/or in-lake restoration methods; there is no specified maximum, but they require a 50 percent non-Federal share. Thus, significant amounts of money must be supplied by State, local or private sources. As a general rule, Federal grant programs or other Federal monies cannot be used to supply the State and local share; however, two exceptions do exist. The exceptions are the General Revenue Sharing Funds from the Department of the Treasury and the Community Development Block Grants from the Department of Housing and Urban Development, both of which may be used as a part of the State and local matching funds for the Clean Lakes Program. ### Non-Federal Match A number of States have set up specific funded programs to be used as non-Federal matching funds for the Clean Lakes Program. Others have programs which, although not specifically designed for that purpose, could be used to provide the local match (see Table 11-1). In the State/local section of the matrices, in Table 11-2, under the "Federal Program Matched" column, the phrase "314" denotes States with funded programs specifically designed to match the Clean lakes funds and "314 possible," denotes States where program funds may provide the match under certain conditions. Thirty-two States do not provide matching funds. Consequently, local units of government must provide all the matching funds for the Clean Lakes Program. However, State technical and administrative assistance may be used as an in-kind match. As can be seen in Table 11-2, most States have indicated that they do provide technical assistance which can be used as an in-kind match. Such State services as water quality monitoring and installation of monitoring equipment, laboratory services, and analysis of data can and have been ΄, ### STATES WITH PROGRAMS TO MATCH CLEAN LAKES FUNDS | Specifically Designed Programs | y gamente de la l'espisa Mana | Programs Applicable
Under Certain Conditions | |--------------------------------|-------------------------------|---| | Connecticut | | Arizona | | Florida | | Arkansas | | Massachusetts* | E IA I (EFF) | California | | Maine* . | | Montana | | Minnesota · | and the second second | Nebraska | | New Jersey | | Rhode Island | | North Carolina | | | | Oregon* | | | | Puerto Rico | | · · · · · · · · · · · · · · · · · · · | | South Dakota | 7,45 7,65 175 | | | Washington** | | | | Wisconsin | | | ^{*}Proposed. ^{**}Proposed, Phase 2 only. used as the in-kind match. These services can also be provided at the local level and may include donated time and equipment from qualified local sources. Specific reference to using in-kind services is made in the hypothetical case in Section 12.0 of this manual. ### Combination With Other Complementary Efforts In addition to providing direct matching funds, other programs at the Federal, regional, and State levels can be coordinated with Clean Lakes projects by providing funds for activities that are not directly a part of the work funded under section 314. These are also summarized in Table 11-2. As an example, the Clean Lakes Program regulations specifically exclude costs for controlling point source discharges, where the sources can be alleviated by permits issued under either section 402 of the Clean Water Act, or by the planning and construction of wastewater treatment facilities under section 201 of the Act. Nevertheless, it is recognized that such control of point source discharges is extremely important in the lake restoration process, and that where possible, this work should be coordinated with Clean Lakes projects. Thus, while references to section 201 programs are not included in the State program sections of the matrix, it is important to check with the appropriate program office to determine their applicability to Clean Lakes restoration. Other examples are recreational facilities development programs, such as the Land and Water Conservation Program under the Department of the Interior's Heritage Conservation and Recreation Service. They may not be used to provide matching funds to a Clean Lakes project, but activities funded under them can greatly enhance the benefits obtainable with Clean Lakes funds. Again, as with 201, no reference appears in the matrix to these LAWCON programs. Department of Agriculture programs, especially in the Agricultural Stabilization and Conservation Service, the Farmers Home Administration, and the Soil Conservation Service, are other examples of funded programs which may be used with the Clean Lakes Program. It is important to remember that applications for Clean Lakes projects proposing coordination with other complementary activities will receive more favorable consideration for funding by EPA. ### Sources of Additional Information Written descriptions of Federal, regional, and State programs can be found in Appendix H to this manual. The Federal programs are divided into three sections: those providing financial assistance; those providing technical, informational, or advisory services; and those providing labor. Programs providing financial assistance to be coordinated with the Clean Lakes Program have been summarized in the matrices in this chapter. The matrices indicate the department, agency, and program identification; type of assistance; type of projects which are eligible for the funds; and the eligible recipients. This information, along with the total obligations for fiscal year 1980, average project size, and various application information, has been obtained from the Catalog of Federal Domestic Assistance (available in major libraries, or may be purchased from the Superintendent of Documents, U.S. Government Printing Office). Where necessary, the matrices have been supplemented by data obtained directly from program managers. Two other Federal programs are not included in the matrix but may be useful. The U.S. Army Corps of Engineers has a program which is primarily research-oriented, dealing with projects such as aquatic plant control, beach erosion control, flood control, debris clearance, and channel straightening. This assistance is usually in the form of technical consulting and research by Corps personnel. The other Federal program which does not appear in the matrix is the General Services Administration's Disposal of Federal Surplus Real and Personal Property Programs. This program provides for the transfer of property such as abandoned military installations from the Federal government to eligible recipients. The transfer is usually on a specialized basis and depends on the location of the proposed project. Information concerning State and regional programs was obtained from interviews with State and regional officials. These programs are described in Appendix H, and presented in the matrices in this section. ### RANGES OF PROMULGATED STANDARDS FOR RAW WATER SOURCES OF DOMESTIC WATER SUPPLY | Constituent | Excellent source of water supply, requiring disinfection only, as treatment | Good source of water supply, requiring usual treatment such as filtration and disinfection | Poor source of water supply,
requiring special or auxiliary
treatment and disinfection | | | |---|---|--|--|--|--| | BOD (5-day) mg/l
Monthly average:
Maximum day, or sample: | 0.75-1.5
1.0-3.0 | 1.5-2.5
3.0-4.0 | Over 2.5
Over 4.0 | | | | Coliform MPN per 100 ml
Mouthly average: | 50-100 | 50-5,000 | Over 5,000 | | | | Maximum day, or sample: | Less than 5% over 100 | Less than 20% over 5,000 | Less than 5% over 20,000 | | | | Dissolved Oxygen mg/l average: % saturation: | 4.0-7.5
75% or better | 4.0-6.5
60% or better | 4.0 | | | | pH
Average: | 6.0-8.5 | 5.0-0.0 | 8.8-10.5 | | | | Chlorides, max. mg/l | 50 or less | 50-250 | Over 250 | | | | Fluorides, mg/l | Less than 1.5 | 1.5-3.0 | Over 3.0 | | | | Phenolic compounds, max. mg/l | None | 0.005 | Over 0.005 | | | | Color, units | 0-20 | 20-150 | Over 150 | | | | Turbidity, units | 0-10 | 10-250 | Over 250 | | | # COMPARISON OF CHEMICAL CONSTITUENTS IN THE DRINKING WATER STANDARDS OF THE WORLD HEALTH ORGANIZATION AND THE U.S. PUBLIC HEALTH SERVICE | Chemical Constituent Fermissible Exercisive Miorimum Allowable Almonable Limit Limit Limit Limit Limit Limit Limit Limit Allowable Allowable Allowable Allowable Limit Limit Limit Limit Limit Allowable Allowable Limit Limit Limit Limit Allowable Allowable Allowable Limit Limit Limit Allowable Allowable Limit Allowable Limit Allowable Limit Limit Limit Limit Allowable Limit Limit Limit Limit Limit Allowable Limit Limit Limit Allowable Limit Limit Limit Limit Limit Limit Allowable Limit Limit Limit Allowable Limit |
--| | Rec. | | uropean (1961) Uropean (1961) Tolerance Limit | | ## The commended Maximum Maximum Maximum Allowable 0.05 0.05 0.01 0.05 0.01 0.05 0.01 0.05 | ### WATER QUALITY OBJECTIVES AND MINIMUM TREATMENT REQUIREMENTS Water Quality Objectives, Applicable to Receiving Waters, for Salt and Fresh Surface Waters and Underground Waters | | | | | | | | | | 1 | 1 | (acet tramatati | |-----|--|--|--
---|--|---|--|---|---
--|--| | | effective displayment | вроме | eroda | won in a municular with a wood of a value of a make receiving water unsultable of a solution of the control | "A" est 101 es ems8
evods | on on on payouby H - a foo in a function or If a se beeson - and an of bluode a food bank on a food bank of bluode | eesds nads sassD
(5) parts per
notilim | ol eldaludivisa enoli
larizengo; pizades
masica or olter westes
Vestes pizades en la
la esticalista en la
la esticalista en la
la esticalista en la
esticalista en la estical
en la esticalista estical en la estical
en la estical en la estical
en la estical en la estical en la estical
en la estical en la estical en la estical
en la estical en la estical en la estical en la estical
en la estical en esti | "A" sen 101 se Smaß
evoda | -u
pu
(*) | AND HOUSTRIAL AND HOUSTRIAL AND HOUSTRIAL AND HOUSTRIAL SCHOOL CORP. THE SUTTLY AND A | | _ | Bedimentation and | "A" eau sol se emaß | 101 as smad | Vone in nufficient | | | | 52h, shelifish, or other
edible aquatio forms | | -qorq & diworn and roll
dailleds to noilege | | | ١ | The definition only | -ni o do a to linany
luriona to or lucticie.
Includit do motimal piece.
Gaillo de fial, abelliah.
Or other aquatio life. | проле | "C., PPOAG | dim notination of the control | Same pa for use
"A" above | xis aad 1 131aat (b)
130 ad 140 (b)
131 ad 111 1 | None attributable to
sewage, industrial
waytes, or other wastes
which will interfere
with the marketability
or propagation of rec-
treational or commercial | PAOGR | Colitorm bacterial con-
tent of a representative
number of amples
abould not have a
median concentation
greater than 70 per
greater than 50 per
greater in waters used | D. GROWTH & PROPORTING OF THE BURLLFUEL SHELL SH | | | Sedimentation for all
quorg eid, tabnu essu | Hone in sufficient | Same as for | Same as for use | ni 10 snola snoli | | | | | tic sewage (see note
under "C" at left) | miolilos lo desenta of coliform | | , ' | 24.02.01 | evode. | "fl" eeu
sbove | por to illion on one on to mone to the fine of the outpet a residual impart a residual feate to recese. I consul or commer cial fish, shellish, or other aqualic tense. | вроде
Више в се се с | Babe sa for Use | Ord neds 1700
Orealest Des mil-
fion | of old autifulation of old and the old of old autifulation wastes, inclusive wastes or older transmitted in the old old older of the older | "A" een vol se emeS
evode | Coliform bacterial con-
tent of a representative
funder of eamples
about average tes-
than 240 per 100 ml.
and abould not exceed
this number in more
than 20 per cent of
eamples examined when
eamples examined when | MING AWIM. MING AND PECHEATION Woles When waters are used for recreational purposes such as fishing the multiper. "1000" may the multiper with a fishing the multiper. "1000" may he halling a serial and the multiper. "1000" may he substituted for "250". John "100" may he substituted for "250". | | | bua noiteineoibed
noiteolite eviteelle | "A" seu sol es suns | Tol sa omaß | Less than 25 parts | "A" saU vol sa omaB | will sol as and | | | | of samples examined
in any month | present impurities | | 1 | เกมีออไกเลเษ evidooไป | PAOAE | - tin control of incontrol i | parks per billion | "A" seu sol sa sma?
svoda | esu vol sa egnell
evoda "Å" | Oftender than Gro
by parke pilor
Losept for
Underground
Walers
Walers | sewage, industrial | Same as for use "A"
avoda | -sed or oblica. M. P. M. P. M. P. M. P. M. P. See a radw before a society of the state of the sewage of the state of the sewage of the sea t | D. WATER SUPPLY, DRINKING, CULI-
NARY & FOOD PRO.
UESSING CULI-
With treatment equal to
coaguisation, edimenta-
tion, fluestion, distinte-
tion and any additional
teaonthis, necessary for
temoring natically | | | notiosinis edinotonos | The state of the com- tilical alone on to com- tilical alone on the com- tilical on the com- tilical of th | | (8) and nead was a moillion and a paragraph of the (8) and a made was | thiw nothanidmoso to be about a control or | 20 -15 nollaufuss
11q as bossaya
1 - ritain ad bluodi
2 - assaylad banial
1 - 3.8 bna d.8 | o - lift ap ahaq (d)
Tol 4qsəxe noi
broomsababa
Biəlaw | ewage, industrial | laistembai assures | -mos latin backetial con- | A. WATER BUPLY. DIMINING CULIN- CFSBING CFSBING Without treatment other than simple disinfection and removal of naturally and removal of naturally | | | Instituted invention for the formal of f | ewlangmas delit
sotesw
-anup sasiomus ni soM | 110 | allaneriq
ebnuoqunaa | Toxic, colored, or other deleterleus substances | Hq | bevioss[U
negyzo | Taste- or odor-
producing
substances | bebregens "gnitzej?
sbiloz eldzelitez g
sileogob egbulz g | edf to smisinagr()
quong mvolilos | | | | framines! multiple | 1 | annula (supply IRIDA | | | | | | | | | THE NITROGEN CYCLE IN SOIL AND GROUNDWATER Figure 5 ### LBs (Kgs) Nutriant in Lake Nutrient Calculations 1 Gal = 3.85 Liters x ppm = Mg/Gal. Mg/Gal. x Total Gallons in Lake = 1bs. in lake 453 590 Mg/1b. lbs. in lake x . 454 = Kgs in lake Flowing Streams (Need gals. per sec. and ppm) Cubic Meters $Kg/sec = Mg/Liter \times (Gallons \times .00378)$ 1000 Sec's Day Month $Kg/sec \times 86400$ x Days = $Kg/mo \times 2.2046 = 1bs/month$ ### Conversion Factors Acres x .405 = Hectares Hectares x 2.741 = Acres " x 10,000 sq. Meters Acres x 4047 = sq. Meters ? Sq. Meters x .0001 = Hectare Feet x .3048 = Meters Gallons x 3.785 Liters Kg = 2.2046 lbs. 1bs. x . 454 = Kg Yds. x .9144 = Meters 1 Acre = 43,560 1 Gal H₂o 8.345 lbs. 1 Cubic foot H₂o = 7.48 Gals. " = 62.42 lbs. 1 Acre Foot = 2.719,041 lbs. " = 325.829 Gals. Inches x 2.54 cm. ug/L = ppb = .001 ppm X x Y x W
= Cubic feet of inches/sec's $\frac{\text{inches}}{1725}$ = C.F. x 7.48 Gals/cf = Gals./sec's no. of sec's x Gals. = Gallons/minute Flow Culverts = use Robts computerization ### METHODOLOGY ### Hydraulic Parameters - Hydraulic Residence Time = Theoretical time required to displace lake or pond volume based on known inputs (groundwater*, surface flow) into water body. - Flushing Time = Theoretical time required to displace pond or lake volume, based on flow from body. - Groundwater = (mean inflows surface tribs + rainfall) (mean discharge outfall + evaporation) ### EVAPORATION Methodology ### E = .771 (1.465 - .0186B) (.44 - .118W) (C₈ - C_D) E = Eveporation in inches in 24 hours B = mean barometric reading, in inches of mercury at 32 F W = mean speed of ground wind, or water surface wind in miles per hour C₈ = mean vapor pressure of saturated vapor at temperature of water surface, in inches of mercury $C_{\mathrm{D}}^{=}$ mean vapor pressure of saturated air at the temperature of the dew point, in inches of mercury National Oceanic and Atmospheric Administration Environmental Data Service National Climatic Center Ashville, N.C. ### U.S. Weather Service Evaporation is measured in the standard weather service type pan of 4 foot in diameter. Maximum and minimum valves in the evaporation and wind table are monthly averages of daily extremes of temperature of water in pan as recorded during 24 hours ending at time of observation. Wind is the total wind movement in miles over the evaporation pan, as determined by a continuous anemometer recorder located 6-8 inches above the pan. Evaporation readings are inches. The loss from a natural water surface = evaporation of U.S. Weather Servive \times .70 Lake evap.. inches = USWS \times .70 ### D. COMPOST TOILETS - 1. Ecolet Recreational Ecology Conservation of United States, Inc. 9800 West Bluemound Road Milwaukee, Wisconsin 53226 - 2. Clivus-Multrum 14A Eliot Street Cambridge, Massachusetts 02138 - 3. Biu-Let Bio-Utility Systems, Inc. P.O. Box 135 Narberth, Pennsylvania 19072 - 4. A&A Adhesives & Plastics P.O. Box 302 Stow, Massachusetts 01775 (Soddy Potty) - 5. Toa-Throne Compost Toilet P.O. Box 752 Corona del Mar, California 92625 ### E. CHEMICAL TOILETS - Fiberglass Chemical Toilets Chic-Sales Company, Inc. P.O. Box 689 Hillview Building Santa Ana, California - 2. Vapor-Monogram New-Matic Toilet Vapor Corporation 6420 West Howard Street Chicago, Illinois 60648 - Mansfield Sanitary, Inc. Perrysville, Ohio (Sani-Pottie 947) - Mile Ahead Industries Inc. 41 West Putnam Avenue Greenwich, Connecticut 06830 - 5. Waterless Comfort Station Burlway Road P.O. Box 1026 Burlingame, California 94011 - 6. Thetford Engineering Corporation P.O. Box 1285 Ann Arbor, Michigan 48106 (Aqua Magic, Porta Potti) - 7. Sani-Mate Zurn Industries, Inc. Erie, Pennsylvania - Todd Enterprises, Inc. Providence, Rhode Island (Mini-Pot) - Sani-Matic Corporation (Uncle John Dry flush) - Monogram Industries (Tota-toilet) ### F. LOW WATER FLUSH TOILETS - 1. Safeway Toilets Safeway Sanitation 75 Argyle Avenue Buffalo, New York 14226 - Microphor Toilets Microphor, Inc. 475 East San Francisco Avenue Willits, California 95490 - American Standard P.O. Box 2003 New Brunswick, New Jersey 08903 - Kohler Company Kohler, WS 53044 (Water guard toilet) ### A. RECIRCULATING TOILLIS - Thetford Corporation (Cycle-Let) Ann Arbor, Michigan - 2. Monogram Monogram Industries 1165 East 230th Street Carson, California 90745 - Pureway Corporation Pureway 301-42nd Avenue East Mobile, Illinois 61244 - 4. Vapor Corporation Main Office 6420 West Howard Street Chicago, Illinois 60648 - 5. Sears-Roebuck Company - 6. Montgomery Ward ### B. GAS INCINERATING TOILETS - 1. (Destroilet) LaMere Industries, Inc. 227 N. Main Street Walworth, Wisconsin 53184 - 2. (Incinolet) Research Products Mfg. Co. P.O. Box 35164 Airlawn Station Dallas, Texas - Tekmar Corporation (Thermajon) ### C. ELECTRIC INCINERATING TOILETS Incinolet Research Products Mfg. Company P.O. Box 35164 Airlawn Station Dallas, Texas - 7. J.C. Penny - 8. Thiokol MPB-10 Chemical Toilet System-Thiokol Chemical Corporation Wasatch Division (Model MPB-10) P.O. Box 524 Brigham City, Utah 84302 - Multi Flo Home System for Recycling Wastewater (Unit RS-1) (Unit RS-2) Multi-Flo, Inc. 500 Webster Street Dayton, Ohio - 10. Chrysler Corporation (Aqua-Sans) Dept. 2100 P.O. Box 29200 New Orleans, Louisianna 70129 - 4. Clear Water Inc. (Pyrolet) P.O. Box 644 Sheboygan, Wisconsin 53081 - 5. Lake Geneva A & C Corporation Box 89 200 Elkhorn Road Williams Bay, Wisconsin 53191 (A.C. Storburn) - 2. Incinomode Incinomode Sales Company P.O. Box 879 Sherman, Texas 75090 - N-Con Systems Company, Inc. Thermox ### BIBLIOGRAPHY - A Limnological Study of 43 Selected Maine Lakes, U.S. Geological Survey, Water Resources Investigations 80-69, Wetzel, R.G., Limnology - W.B. Saunders Co. 1975. - A Limnological Study of 43 Selected Maine Lakes, Maine Dept. E.P.A. 1980. - A Research Strategy For Social Assessment of Lake Restoration Programs, Homey & Hogg, U.S. E.P.A. 1978. - Bio Sketches and Abstracts International Symposium on Inland Waters and Lake Restoration, Sept. 12, 1980. - Bouldin, D.R., H.R. Capener, G.L. Casler, A. E. Durfee, R.C. Loeher, R. T. Oglesby, and R. J. Young. Information Bulletin 127, New York State College of Agriculture and Life Sciences at Corness Univ., Ithaca, New York. - Clean Lakes Program Guidance, U.S. E.P.A., December 1980. - Clean Lakes Program Guidance E.P.A. Office of Water Regulation and Standards, Sept. 1980. - Clean Lakes Program Strategy, U.S. E.P.A. 1980. - Department of Environmental Quality Engineering (DEQE) Publication of Eutrophication and Aquatic Vegetation Control Program, Boston, Massachusetts. - Ecology of Inland Waters A Estuaries, G. Reid. Van Nostrand Co., N.Y., N.Y. - Economic Benefits of The Clean Lakes Program, E.P.A., Sept. 1980. - Eutrophication Causes, Consequences, Correctives, Proceedings of a Symposium, Natural Academy of Sciences, Washington, D. C., 1969. - Eutrophication of Lake Tahoe Emphasizing Water Quality; U.S. E.P.A., Corvallis, Oregon. - Eutrophication of Surface Waters Lake Tahoe; s Indian Creek; U.S. E.P.A., Corvallis, Oregon. - Eutrophication in Vermont 1975 Water Quality Surveillance Series, report no. 3; Dept. of Water Resources, Water Quality Div., Montpelier, Vermont. - Excessive Water Fertilization, Wisconsin, January 1967. - Flushing of Small Lakes; U.S. E.P.A., Corvallis, Oregon. - Freeze, R.A. and Cherry, J.A. Groundwater, Prentice Hall, Inc., Englewood Cliffs. - Fundamentals of Groundwater Protection, Seminar Handbook 1980. - Groundwater. Freeze & Cherry 1979. Prentice Hall, Englewood Cliffs, N.J. - Groundwater Movement, R. Glover, U.S. Dept. Interior 1973. - Guide to Aeration and Circulation Techniques; U.S. EPA, Corvallis, Oregon. - Guide For The Design, Operation and Maintenance of Small Sewage Disposal Systems, Maine Department of Health Services, January 1978. - Guide for Design, Operation and Maintenance of Small Sewage Disposal Systems, New Hampshire Water Supply and Pollution Control Commission. - Guidance for the Preparation of Lake Restoration Grant Applications, U.S. E.P.A., Washington, D.C. - Hogg, Thomas C., William D. Honey. A Research Strategy for Social Assessment of Lake Restoration Programs; U.S. E.P.A., Corvallis, Oregon. - Influence of Land Use on Stream Nutrient Levels; U.S. E.P.A., Corvallis, Oregon. - Lakes Region Water Quality Management Plan; Lakes Region Planning Commission, New Hampshire, September 1978. - Lee, G.F. Eutrophication, University of Wisconsin, Madison, Wisconsin. - Limnology R.G. Wetzel W.B. Saunders Co., Philadelphia, Pa. - Long Island Comprehensive Waste Treatment Plan, July 1978. Nassau Suffolk Regional Planning Board. - MacKenthun, Kenneth. Toward a Cleaner Aquatic Environment U.S. Environmental Protection Agency. - Management of Bottom Sediments Containing Toxic Substances, U.S. E.P.A., Corvallis, Oregon. - Non-Point Source Stream Nutrient Level Relationships; U.S. E.P.A., Corvallis, Oregon. - Nutrient Diversion: Resulting Trophic State and Phosphorous Dynamics; U.S. E.P.A., Corvallis, Oregon. - Nutrient Inactivation as a Lake Restoration Procedure Laboratory Investigagions; U.S. E.P.A., Corvallis, Oregon. - Our Nations Lakes, E.P.A., July 1980. - Plumbing Code, Part 2 Subsurface Wastewater Disposal Regulations; Department of Human Services, Div. of Health Engineering. - Process Design Manual for Nitrogen Control U.S. E.P.A., Technology Transfer, Oct. 1975 - Process Design Manual For Phosphorus Removal U.S. E.P.A., Technology Transfer, April 1976. - Quantitative Techniques For The Assessment of Lake Qualities, K.H. Reckhow, U.S. E.P.A., January 1979. - Reid Ecology of Inland Waters and Estuaries. Nostrand Co. 1961. - Site Evaluation for Subsurface Waste Disposal in Maine; Maine Department of Human Services, Division of Health Engineering, Sept. 1979.